首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Lepidoptera, female mating systems range from strict monandry to strong polyandry. Males transfer an ejaculate during copulation that contains both sperm and accessory gland substances. In butterflies the male ejaculate has at least three effects: it (1) contains sperm that can fertilize the eggs of the male’s mating partner, (2) influences the refractory period of the mated female, and (3) contains nutrients that can be used by the female to increase her reproductive output. A number of recent studies have shown that males in polyandrous mating systems are endowed with adaptations to increase mating capabilities. Relative to males in more monandrous species they transfer larger first ejaculates which contain relatively more protein, and allocate proportionally more resources to reproduction. The objective of this study was to compare male reproductive investment in successive ejaculates, in terms of both mass and quality, to determine if males of polyandrous species are capable of maintaining the production of larger and more nutritious ejaculates than males of more monandrous species. We used three species of pierid butterfly, with mating systems ranging from relative monandry to polyandry. The degree of polyandry had a substantial effect on the reproductive performance of males. The cumulative protein content of ejaculates increased with the degree of polyandry. Only males of the most polyandrous species, Pieris rapae, produced three successive ejaculates of similar mass and protein content. In the relatively monandrous species, Aporia crataegi and P. brassicae, males in subsequent matings never produced another ejaculate as large as that transferred by males mating for the first time, although the protein content (mg) of ejaculates did not differ in second and third ejaculates. Moreover, the ability to remate varied with the degree of polyandry. Given the opportunity to remate, the majority of P. rapae males mated three times, whereas relatively few A. crataegi and P. brassicae males were able to perform three matings. These results suggest that male capacity to produce large, nutritious ejaculates is limited in relatively monandrous species. In this study only males belonging to the most polyandrous species had the ability to recuperate quickly from a mating event and remate. Our results suggest that males in polyandrous systems are better adapted to mating more than once. Received: 3 November 1995/Accepted after revision: 13 July 1996  相似文献   

2.
Male mating status can affect female reproductive output if male ejaculate investment declines over consecutive matings. Accordingly, females are predicted to mate preferentially with virgin males. In mildly polyandrous lepidopterans, female fitness is less affected by reduced male investment than in more polyandrous species, and so the predictions for female mating preferences are less clear. We examined female mating preferences in the mildly polyandrous almond moth, Cadra cautella, in which ejaculate size does not affect female reproductive output. First, we allowed females to mate with virgin or once-mated males, in which the males were presented individually or simultaneously. We recorded the latency to mating and, in the case of the simultaneously presented trials, the identity of the successful, copulating male. We found that females mated more frequently with mated males (when simultaneously presented with both males), yet females did not differ in the time taken to initiate copulation with any male. We further examined if this mated male advantage was due to differential mate detection or locomotory behaviour of the male treatments. We tested the ability of virgin and mated males to locate a receptive female within a wind tunnel using long-distance pheromone cues and recorded their activity budget. We found no difference in the ability of mated or virgin males to locate or approach a receptive female, or in their activity levels. These data suggest a female preference for mated males in this species, a preference that may minimise other potential costs of mating.  相似文献   

3.
When females receive no direct benefits from multiple matings, concurrent multiple paternity is often explained by indirect genetic benefits to offspring. To examine such possibilities, we analyzed genetic paternity for 1,272 hatchlings, representing 227 clutches, from a nesting population of painted turtles (Chrysemys picta) on the Mississippi River. Goals were to quantify the incidence and distribution of concurrent multiple paternity across clutches, examine temporal patterns of sperm storage by females, and deduce the extent to which indirect benefits result from polyandrous female behaviors. Blood samples from adult males also allowed us to genetically identify the sires of surveyed clutches and to assess phenotypic variation associated with male fitness. From the genetic data, female and male reproductive success were deduced and then interpreted together with field data to evaluate possible effects of female mating behaviors and sire identity on offspring fitness. We document that more than 30% of the clutches were likely fathered by multiple males, and that presence of multiple paternity was positively correlated with clutch size. Furthermore, the data indicate that the second male to mate typically had high paternity precedence over the first.  相似文献   

4.
In Lepidoptera polyandry is common and females may increase their lifetime reproductive output through repeated matings if they acquire essential resources from male ejaculates. However, the paternity of males mating with previously-mated females is far from assured unless sperm precedence is absolute. In this study on the polyandrous armyworm, Pseudaletia unipuncta, we used two strains of male (the black-eyed wild type and a red-eyed homozygous, recessive mutant), mated with red-eyed females, to determine (i) whether male investment has any impact on female reproductive output, and (ii) if females do benefit from multiple matings, to what extent males fertilize the eggs to which they contributed. Multiple mating resulted in a significant increase in both the fecundity and longevity of females. However, the degree of sperm precedence (those eggs fertilized by the second male) varied from 0–100%, but was not affected by either male size or age, or by the duration of copulation. In cases where sperm precedence was <50% (x = 12%) females produced significantly more eggs (1384 versus 940) prior to the second mating than females where sperm precedence was >50% (x = 89%), indicating that the quality of the first mating influenced the fertilization success of the female's second mate.  相似文献   

5.
Sperm storage is widespread in many vertebrate groups, and it is frequently associated with promiscuous mating systems. Chelonian species are one of the most outstanding examples of a promiscuous group capable of long-term sperm storage; specialized structures have evolved within the oviducts of these vertebrates to ensure sperm vitality across reproductive cycles. Thus far, few studies have investigated the factors regulating multiple paternity, sperm usage by females and paternity distribution in successive clutches. This study aimed to investigate the effect of mating order on male mounting and reproductive success in Testudo hermanni hermanni, combining behavioural and genetic data. A series of planned matings were performed, within which experimental females were mated sequentially to two different males under controlled conditions. Observations conducted during experimental matings revealed that courtship displays did not significantly differ between the first and second males to mate with a female. Interactions ending with a mount were characterized by a significantly higher intensity and occurrence of determinate courtship behaviours, for example biting and running after the female. Paternity analysis performed on hatchlings produced from experimental females revealed that 46 % of the clutches were multi-sired. A significant contribution of previous years' partners was still found, thus confirming the long-term sperm storage within the female oviduct in this species. Finally, mating order did not significantly affect the reproductive success of experimental males during the on-going reproductive season.  相似文献   

6.
Female seaweed flies, Coelopa frigida, have the potential to benefit from mating more than once. Single matings result in low fertility so females may benefit directly from multiple copulations by sperm replenishment. A chromosomal inversion associated with larval fitness, with heterokaryotypic larvae having higher viability than homokaryotypes, means that polyandrous homokaryotypic females have a higher probability of producing genetically fit offspring than monandrous homokaryotypic females. We allowed females to mate only once, repeatedly four times to the same male, or polyandrously four times to four different males. Multiply mated and polyandrous females laid more eggs and produced more offspring than singly mated and monandrous females, respectively. Polyandrous females laid more eggs, had higher egg-to-adult survival rates and produced more offspring than repeatedly mated females. Fertility rates did not differ between treatments. The observed fitness patterns therefore resulted from increased oviposition through multiple mating per se, and a further increase in oviposition coupled with higher egg-to-adult offspring survival benefits to polyandry. Daily monitoring of individual females over their entire life spans showed that multiple copulations induced early oviposition, with polyandrous females ovipositing earlier than repeatedly mated females. Singly mated and polyandrous females incurred a longevity cost independent of egg production, whereas repeatedly mated females did not. This suggests that repeatedly mating with the same male may counteract a general cost of mating. Longevity, however, was not correlated with overall female fitness. Our data are discussed in the overall context of the seaweed fly mating system.Communicated by G. Wilkinson  相似文献   

7.
Sperm competition models predict that males should adjust their sperm expenditure according to the risk and/or intensity of sperm competition. In this paper, we analysed copulatory behaviour of both sexes and sperm expenditure in relation to female mating status (virgin or mated) in the freshwater crayfish Austropotamobius italicus, a species where males have been reported to feed on and remove sperm laid by other males. The same females were allowed to be inseminated sequentially by two males, and we compared the sexual behaviours of partners between the first (virgin females) and the second mating (mated females). We found that female resistance did not differ between the first and the second mating, nor males refused or took more time to mount a mated female. However, when mating with a mated female, males reached an effective copulation position significantly later. This occurred because second-mating males removed, by eating, all or most spermatophores previously deposited by first males. As removal was often incomplete, this resulted in a larger amount of sperm being deposited on female ventral parts after the second mating, although second males did not allocate more sperm to mated females than first males did. Thus, the peculiar mode of sperm competition, where males remove previously deposited sperm, and the consequent predictable strong last male prevalence in paternity likely led to the observed lack of adjustment of sperm expenditure to female mating status in this species.  相似文献   

8.
The growing molecular evidence that females of many species mate with several males calls for a critical reassessment of the selective forces which act to shape female mating tactics. In natural populations of the harlequin-beetle-riding pseudoscorpion, Cordylochernes scorpioides, females are polyandrous and typically produce mixed-paternity broods. Laboratory behavioral analyses and breeding experiments indicate that polyandry in this pseudoscorpion is an active strategy which increases female reproductive success. Females restricted to mating with a single male experienced a higher rate of embryo failure and produced significantly fewer offspring than either females mated to more than one male in the laboratory or females naturally inseminated in the field. Forced copulation, insufficient sperm from a single mating, male nutrient donations and variation in inherent male genetic quality cannot explain the greater number of nymphs hatched by polyandrous females in this study. Evidence suggests that, by mating with several males, C. scorpioides females may exploit postcopulatory mechanisms for reducing the risk and/or cost of embryo failure resulting from fertilization by genetically incompatible sperm. Received: 5 May 1996 / Accepted after revision: 16 October 1996  相似文献   

9.
The evolution of a mating system, and specifically mating frequency, is dependent on the costs and benefits to both sexes of mating once or several times. In butterflies, males transfer a spermatophore that contains both sperm and accessory gland products. Accessory gland substances contain nutrients which, in some species, females use to increase their reproductive output and longevity. Nutrients contained in these packaged ejaculates represent investment by males in reproduction. Consequently, the nutritional composition of spermatophores may vary depending on the mating system. There are two lines of arguments concerning the evolution of the nutrient content of ejaculates. One hypothesis argues that male nuptial gifts evolved in the context of certainty of paternity and ease of finding mates; thus spermatophores of polyandrous males (with lower certainty of paternity and greater ease of finding mates) should contain less protein than those of monandrous males, since more spermatophores are produced on average. The other hypothesis argues that polyandry evolved in the context of maximization of male transfer of nutrients to females, and hence spermatophores of polyandrous males should contain more protein than those of monandrous males. In an attempt to distinguish between these two hypotheses, we determined how protein content of ejaculates varied with the degree of polyandry in nine species of pierid and two species of satyrid butterflies. We found that both relative ejaculate mass and protein content increased with the degree of polyandry. Hence our results are consistent with the view that polyandry has evolved in the context of male transfer of nutrients to females, and provides another example of a male adaptation to multiple mating in butterflies.  相似文献   

10.
The fiddler crab Uca mjoebergi mates both underground in male-defended burrows and on the surface near female-defended burrows. The reproductive tract of Uca species facilitates last-male precedence, suggesting that males that do not guard-mated females are likely to gain very little paternity if the female re-mates with another male. Here, we test the reproductive success of burrow and surface matings using paternity analysis. We found that 100?% of the females that mated in burrows extruded a clutch of eggs. Furthermore, we show conclusively, for the first time in a fiddler crab species, that last-male sperm precedence results in the majority of the female’s eggs being fertilised by the burrow-mated male. In contrast, surface matings resulted in significantly fewer females extruding eggs (5.6?%). Paternity analysis also revealed that more than half of the clutches from burrow-mated females showed low levels of extra-pair paternity from previous matings. Although multiple matings appear common in U. mjoebergi, burrow-mated males that guard females are guaranteed a successful mating with extremely high rates of assured paternity. Surface matings therefore appear to be an opportunistic tactic that may increase male reproductive success in a highly competitive environment.  相似文献   

11.
Field observation and laboratory experiments were conducted to investigate sperm competition and patterns of sperm fertilization under different experimental conditions in the carrion ball-roller beetle Canthon cyanellus cyanellus. Males in nature can mate with females whose spermathecae contains fertile sperm from other males. Sperm precedence was investigated using a visible genetic marker. The progeny of red (homozygous recessive) virgin females mated once with a red male and afterward, once with a green beetle (homozygous dominant) and vice versa, revealed that regardless of its color, the last male to mate fertilized c.a. 50% of the eggs, suggesting strong sperm competition. Males were able to achieve higher levels of paternity (more than 80%) when mated ad libitum with previously mated females, although large amount of variance in paternity does not exclude the possibility of first male sperm precedence or female cryptic choice. These results suggest that repeated mating and sperm replacement are the mechanisms by which last males achieve sperm precedence.  相似文献   

12.
A comprehensive understanding of sexual selection requires knowledge of the traits and mechanisms responsible for increasing a male’s paternity share (proportion of progeny sired) relative to that of other males mating with the same female. In this study we manipulated by starvation the expression of traits that might influence male paternity share in Tribolium castaneum. We then conducted experiments to examine how male starvation affects male performance during sequential episodes of sexual selection from mating to progeny production, and investigated female control over specific stages by using live vs dead females. Comparison of starved vs fed males revealed that T. castaneum females have control over spermatophore transfer during mating, as live females rejected inseminations by starved (“low quality”) males. None of the measured male copulatory behaviors (leg-rubbing frequency, asymmetry, and percent of time spent rubbing) affected the probability of successful insemination, but the last two were positively associated with male paternity share. Spermatophore positioning within the female reproductive tract was not affected by male treatment (starved/fed), by female treatment (live/dead), or by male copulatory behaviors. Starvation, however, had a dramatic effect on male reproductive physiology, decreasing both accessory gland size and total number of sperms transferred (but not sperm viability in seminal vesicles). In addition, females who mated to starved males stored fewer sperms in their spermathecae, which, together with decreased ejaculate size, may explain the reduced paternity share of starved males compared to fed males. This study elucidates some cryptic mechanisms influencing male reproductive success and aids our understanding of trait evolution through sexual selection.  相似文献   

13.
Summary Protandry, or early male emergence, is prevalent in the majority of insects. There are several explanations, both adaptive and incidental for this widespread phenomenon. Here I report the occurrence of protandry in the wartbiter, Decticus verrucivorus, and argue that the explanation for the evolution of protandry in this species is the result of selection acting on males in relation to sperm competition. It has previously been shown that sperm mixing occurs in this species, leading to a reduction in confidence of paternity with number of matings. Emerging early and thereby having a higher probability of mating with virgin females benefits males in two ways: both through a 100% assurance of paternity and because female egglaying rate decreases over time. A singly mated female can lay up to 30% of her lifetime egg production during her first refractory period, during which time the eggs are exclusively fertilized by the first male. Wartbiter males seem also to be able to assess female mating status and transfer larger spermatophores when mating with virgin females than when mating with already mated females. This holds true both for previously mated and virgin males. Thus, it seems that male wartbiters allocate their resources differentially depending on female quality.  相似文献   

14.
Butterfly mating systems exhibit great variation and range from strict monandry to strong polyandry. During mating males transfer ejaculates containing both sperm and accessory substances to females. In the polyandrous green-veined white butterfly, Pieris napi (Lepidoptera, Pieridae) these ejaculates average 15% of male body mass, but can represent up to 23% of body mass for individual males. Hence, mating is costly to males, and recently mated males increase copula duration but decrease ejaculate mass transferred to females. Substances transferred to females during mating are later incorporated into female soma and reproductive tissues, and multiply mated female butterflies have higher lifetime fecundity, lay proportionately larger eggs, and live longer compared to once mated females. Here we report that females of P. napi allowed to mate at liberty with recently mated males only (i.e. males that delivered a small ejaculate) increased their lifetime number of matings compared to females allowed to mate with virgin males only (i.e. males that delivered large ejaculates), the former group mating on average 5.1 times (range 2–10) and the latter group mating on average 2.8 times (range 1–4). The lifetime fecundity of the two groups of females did not differ significantly. Because nutrient donation from males is essential for females to realize their potential fecundity, we conclude that females of the polyandrous green-veined white actively forage for matings.  相似文献   

15.
Phenotypic variation in male genitalia may affect copulation behaviour, which can have important fitness consequences for males. Male genitalia commonly possess traits that increase male control over copulation, but in species where females control mating, a poor functional understanding often prevents insight into the processes responsible for such effects. Here, I investigate the effect of male genital length on copulation behaviour in the earwig Euborellia brunneri, where both sexes exhibit extremely elongated genitalia that correspond in shape. This model system is particularly suitable because pairs mate repeatedly and females can limit both the number and duration of copulations. I used both virgin and mated males and females in a double-mating design because longer male genitalia confer benefits in sperm competition. Consistent with a greater predicted male mating effort in mated females, the duration of individual copulations increased, but this traded off against mating frequency as cumulative mating duration remained unchanged. In contrast, male genital length increased both individual and cumulative mating duration, regardless of mating status. This difference suggests that, while males may modify copulation duration in response to mating status, females facultatively adjust mating frequency to prevent mating excessively or express preferences for increased male genital length. Notably, this study demonstrates that male genital phenotypes that are successful in sperm competition also enjoy female-mediated mating benefits.  相似文献   

16.
In polyandrous and polygynandrous species where females mate with multiple partners, males are expected to maximize their fitness by exhibiting an array of reproductive behaviors to ensure fertilization success, such as competing for the best mating order within a mating sequence, optimizing their investment in copulation, and mate guarding. Though there is genetic evidence of a first-male precedence in siring success for many mammalian species, the causes of this effect are poorly understood. We studied influences on first-male precedence in Columbian ground squirrels (Urocitellus columbianus). We found that the time a male spent consorting and mate guarding declined with his mating order (both the highest for the first male to mate). Mate guarding by the first male significantly reduced, but did not exclude, the number of additional males a female accepted. Later mating males reduced the time spent consorting, suggesting a perceived decreased chance of fertilization success. Consortship and mate guarding durations were positively related to the male’s siring success and to each other, suggesting that males adjusted these behaviors strategically to increase their chances of fertilization success. Our results suggest that besides being the first male to consort, first-male sperm precedence is further enhanced through longer mating bouts and by suppressing the chances and/or efforts of later mating males.  相似文献   

17.
In a recent review, Westneat and Stewart (2003) compiled evidence that extra-pair paternity results from a three-player interaction in which sexual conflict is a potent force. Sequentially polyandrous species of birds appear to fit this idea well. Earlier breeding males may attempt to use sperm storage by females to obtain paternity in their mates subsequent clutches. Later-breeding males may consequently attempt to avoid sperm competition by preferring to pair with previously unmated females. Females may bias events one way or the other. We examined the applicability of these hypotheses by studying mating behavior and paternity in red-necked phalaropes (Phalaropus lobatus), a sex-role reversed, socially polyandrous shorebird. Male red-necked phalaropes guarded mates more strongly than other shorebirds. Males increased within-pair copulation attempts during their mates fertile period, and maintained or further increased attempts towards the end of laying, suggesting an attempt to fertilize the females next clutch; these attempts were usually thwarted by the female. Paired males sought extra-pair copulations with females about to re-enter the breeding pool. Multilocus DNA fingerprinting showed that 6% of clutches (4/63) each contained one chick sired by a male other than the incubator, producing a population rate of these events of 1.7% (n=226 chicks). Male mates had full paternity in all first clutches (n=25) and 15 of 16 monogamous replacement clutches. In contrast, 3 of 6 clutches of second males contained extra-pair young likely fathered by the females previous mate. Previously mated female phalaropes may employ counter-strategies that prevent later mating males from discriminating against them. The stability of this polyandrous system, in which males provide all parental care, ultimately may depend on females providing males with eggs containing primarily genes of the incubating male, and not a previous mate.Communicated by M. Webster  相似文献   

18.
Sexual selection theory predicts different optima for multiple mating in males and females. We used mating experiments and genetic paternity testing to disentangle pre- and postcopulatory mechanisms of sexual selection and alternate reproductive tactics in the highly promiscuous lizard Eulamprus heatwolei. Both sexes mated multiply: 30–60 % of clutches were sired by two to four fathers, depending on the experiment. Larger males sired more offspring when we allowed male contest competition: 52 % of large males but only 14 % of small males sired at least one offspring. In the absence of male contest competition, females mated promiscuously and there was no large male advantage: 80 % of large males and 90 % of small males sired at least one offspring, and there was no evidence for last-male precedence. Multiple mating did not yield obvious direct or indirect benefits to females. E. heatwolei represents a complex system in which males attempt to improve their fertility success by limiting rivals from access to females and through adopting alternate reproductive tactics. Conversely, females exhibit no obvious precopulatory mate choice but may influence fitness through postcopulatory means by either promoting sperm competition or through cryptic female choice. Our results support the hypothesis that female multiple mating in nonavian reptiles is best explained by the combined effect of mate encounter frequency and high benefits to males but low costs to females.  相似文献   

19.
In many mating systems, males adopt alternative reproductive tactics (ARTs) to maximize reproductive success. In fishes, guarding males often invest more energy into courtship, defense, and paternal care, whereas cuckolding males forego such costs and steal fertilizations by releasing their sperm in the nest of a guarding male. These two tactics have been documented in the plainfin midshipman fish (Porichthys notatus), yet the relative reproductive success of the guarding and cuckolding male tactics remains unknown. In this study, we used microsatellite markers to determine the level of paternity of the guarding type I males. We explored how paternity varied with male phenotype and across the breeding season. Our results revealed the lowest documented levels of paternity in a species with obligate paternal care. Although paternity remained consistently low, it did increase as the breeding season progressed. Male body size did not significantly predict paternity. The low paternity in this species may be explained, in part, by aspects of their reproductive ecology including the duration of parental care period, limited nest availability and competition for nests, as well as the occurrence of nest takeovers. Overall, our findings contribute to the understanding of the ultimate factors underlying ARTs in this species and highlight the importance of investigating reproductive success across the entire breeding season.  相似文献   

20.
Contrary to vertebrates, sperm production in insects may bear considerable costs for males. This is especially true in species that donate spermatophores containing sperm and nutrient-rich accessory gland products like in butterflies. Hence, spermatophores at first and subsequent copulations can differ in a quantitative and qualitative way. Such effects have particularly been shown in polyandrous species providing large spermatophores. Here we experimentally tested the effect of male mating status (virgin male vs recently mated male) on copulation duration, spermatophore size and females’ fitness components in a monandrous butterfly Pararge aegeria that typically donates small spermatophores. Copulations with non-virgin males lasted on average five times longer than that with virgin males and resulted in a spermatophore which was on average three times smaller. Number of eggs laid and female life span were not affected by the mating status treatment, but there was a significant effect on the number of living caterpillars a female produced, as copulations with virgin males resulted in higher numbers of larval offspring. Interestingly, the difference in spermatophore mass at the first and the second copulation increased with male body size. This suggests differential spermatophore allocation decisions among males of different size. Consequences for females and potential mechanisms influencing female fitness components are discussed. Given the small absolute size of spermatophores in P. aegeria, components other than consumable nutrients (perhaps hormones) should cause the observed effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号