首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   

2.
ABSTRACT: Cedar Rapids obtains its municipal water supply from a shallow alluvial aquifer along the Cedar River in east-central Iowa. Water samples were collected and analyzed for selected isotopes and chlorofluorocarbons to characterize the ground-water flow system near the municipal well fields. Analyses of deuterium and oxygen-18 indicate that water in the alluvial aquifer and in the underlying carbonate bedrock aquifer was recharged from precipitation during modern climatic conditions. Analyses of tritium indicate modern, post-1952, water in the alluvial aquifer and older, pre-1952, water in the bedrock aquifer. Mixing of the modern and older waters occurs in areas where (1) the confining layer between the two aquifers is discontinuous, (2) the bedrock aquifer is fractured, or (3) pumping of supply wells induces the flow of water between aquifers. Analyses of chlorofluorocarbons were used to determine the date of recharge of water samples. Water in the bedrock aquifer likely was recharged prior to the 1950s. Water in the alluvial aquifer likely was recharged from the 1960s to 1990s. Biodegradation or sorption probably affected some of the ground water analyzed for chlorofluorocarbons. These processes reduce the concentrations of CFCs, which results in older than actual calculated dates of recharge.  相似文献   

3.
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach.  相似文献   

4.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   

5.
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions.  相似文献   

6.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

7.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

8.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

9.
ABSTRACT: Devils Hole is a collapse depression connected to the regional carbonate aquifer of the Death Valley ground water flow system. Devils Hole pool is home to an endangered pupfish that was threatened when irrigation pumping in nearby Ash Meadows lowered the pool stage in the 1960s. Pumping at Ash Meadows ultimately ceased, and the stage recovered until 1988, when it began to decline, a trend that continued until at least 2004. Regional ground water pumping and changes in recharge are considered the principal potential stresses causing long term stage changes. A regression was found between pumpage and Devils Hole water levels. Though precipitation in distant mountain ranges is the source of recharge to the flow system, the stage of Devils Hole shows small change in stage from 1937 to 1963, a period during which ground water withdrawals were small and the major stress on stage would have been recharge. Multiple regression analyses, made by including the cumulative departure from normal precipitation with pumpage as independent variables, did not improve the regression. Drawdown at Devils Hole was calculated by the Theis Equation for nearby pumping centers to incorporate time delay and drawdown attenuation. The Theis drawdowns were used as surrogates for pumpage in multiple regression analyses. The model coefficient for the regression, R2= 0.982, indicated that changes in Devils Hole were largely due to effects of pumping at Ash Meadows, Amargosa Desert, and Army 1.  相似文献   

10.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

11.
This study applied hydrogeological characterization and isotope investigation to identify source locations and to trace a plume of ground water contaminated by nitrate. Most of the study site is agricultural fields with the remainder being residential. A poultry farm is also within the study area, so that potential point and nonpoint sources were present. Estimates of seasonal ground water recharge from irrigation and precipitation, leakage of sewage, and the regional ground water flow were linked to the seasonal changes in isotopic values. Ground water recharge largely occurred in spring and summer following precipitation or irrigation, depending on the locations. Natural and fertilized soils were identified as nonpoint sources of nitrate contamination in this area, while septic and animal wastes were identified as small point sources. The seasonal changes in the relative impact of these sources on ground water contamination were related to such factors as source distribution, the aquifer confining condition, precipitation rate, infiltration capacity, recharge rate, and the land use pattern.  相似文献   

12.
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield.  相似文献   

13.
A tracer study was initiated in November 1993 to investigate depression-focused recharge and to monitor solute movement through the vadose zone into the shallow ground water in southeastern North Dakota. Granular potassium chloride (KCl) was surface-applied to two areas overlying subsurface drains and to one area instrumented with soil solution samplers, ground water monitoring wells, time domain reflectometry (TDR) probes, and temperature probes. One of the subsurface drain tracer plots was located on level ground while the other two sites were in small topographic depressions. Formation of ground water mounds beneath the depressions indicated that these areas are recharge sites. The applied Cl- tracer was found to move rapidly to the shallow ground water under the depressional areas after infiltration of spring snowmelt in 1994. Excessive rainfall events were also responsible for focused recharge and the rapid transport of the applied Cl- tracer. Water flow through partially frozen soil at the bottom of the depressions during thaw enhanced preferential movement of the tracer.  相似文献   

14.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

15.
ABSTRACT: Ground water is a vital water resource in the Choushui River alluvial fan in Taiwan. A significantly increased demand for water, resulting from rapid economic development, has led to large scale ground water extraction. Overdraft of ground water has considerably lowered the ground water level, and caused seawater intrusion, land subsidence, and other environmental damage. Sound ground water management thus is essential. This study presents a decision support system (DSS) for managing ground water resources in the Choushui River alluvial fan. This DSS integrates geographic information, ground water simulation, and expert systems. The geographic information system effectively analyzes and displays the spatially varied data and interfaces with the ground water simulation system to compute the dynamic behavior of ground water flow and solute transport in the aquifer. Meanwhile, a ground water model, MODFLOW‐96, is used to determine the permissible yield in the Choushui River alluvial fan. Additionally, an expert system of DSS employs the determined aquifer permissible yield to assist local government agencies in issuing water rights permits and managing ground water resources in the Choushui River alluvial fan.  相似文献   

16.
ABSTRACT: The infiltration of atrazine, deethylatrazine, and deisopropylatrazine from Walnut Creek, a tributary stream, to the alluvial valley aquifer along the South Skunk River in central Iowa occurred where the stream transects the river's flood plain. A preliminary estimate indicated that the infiltration was significant and warrants further investigation. Infiltration was estimated by measuring the loss of stream discharge in Walnut Creek and the concentrations of atrazine and its metabolites deethylatrazine and deisopropylatrazine, in ground water 1 m beneath the streambed. Infiltration was estimated before application of agrichemicals to the fields during a dry period on April 7, 1994, and after application of agrichemicals during a period of small runoff on June 8, 1994. On April 7, the flux of atrazine, deethylatrazine, and deisopropylatrazine from Walnut Creek into the alluvial valley aquifer ranged from less than 10 to 60 (μg/d)/m2, whereas on June 8 an increased flux ranged from 270 to 3060 (μg/d)/m2. By way of comparison, the calculated fluxes of atrazine beneath Walnut Creek, for these two dates, were two to five orders of magnitude greater than an estimated flux of atrazine to ground water caused by leaching from a field on a per-unit-area basis. Furthermore, the unit-area flux rates of water from Walnut Creek to the alluvial valley aquifer were about three orders of magnitude greater than estimated recharge to the alluvial aquifer from precipitation. The large flux of chemicals from Walnut Creek to the alluvial valley aquifer was due in part to the conductive streambed and rather fast ground water velocities; average vertical hydraulic conductivity through the streambed was calculated as 35 and 90 m/d for the two sampling dates, and estimated ground water velocities ranged from 1 to 5 m/d.  相似文献   

17.
ABSTRACT: Numerical models were used to examine the limitations of the assumptions used in an analytical induced infiltration model. The assumptions tested included negligible streambed effects, negligible areal recharge, two-dimensional ground water flow, fully penetrating rivers and wells, and constant surface water stage. For situations that deviate from the underlying assumptions, the analytical model becomes a less reliable predictor of induced infiltration. The numerical experiments show that streambed effects cannot be neglected if the streambed conductivity is more than one order of magnitude lower than the aquifer hydraulic conductivity. Areal recharge cannot be neglected if the ground water basin receives more than 5 in/yr of areal recharge. Three-dimensional flow effects due to well partial penetration cannot be neglected if the ratio of horizontal hydraulic conductivity to vertical hydraulic conductivity (Kh/Ku) is greater than 10. Surface water elevation fluctuations can significantly influence the induced infiltration rate, depending on the degree of fluctuations and the ground water hydraulic gradient.  相似文献   

18.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

19.
ABSTRACT: Artificial recharge as a means of augmenting water sup plies for irrigation is a management alternative which policy makers in ground water decline areas are beginning to consider seriously. A conceptual model is developed to evaluate the economic benefits from ground water recharge under conditions where the major water use is irrigation. The methodology presented separates recharge benefits into two components: pumping cost savings and aquifer extension benefits. This model is then applied to a Nebraska case to approximate the value of recharge benefits as a function of aquifer response. discount rate, and commodity prices. It was found that recharge benefits vary from less than $2 to over $6 an acre foot recharged.  相似文献   

20.
ABSTRACT: Changes in irrigation and land use may impact discharge of the Snake River Plain aquifer, which is a major contributor to flow of the Snake River in southern Idaho. The Snake River Basin planning and management model (SRBM) has been expanded to include the spatial distribution and temporal attenuation that occurs as aquifer stresses propagate through the aquifer to the river. The SRBM is a network flow model in which aquifer characteristics have been introduced through a matrix of response functions. The response functions were determined by independently simulating the effect of a unit stress in each cell of a finite difference groundwater flow model on six reaches of the Snake River. Cells were aggregated into 20 aquifer zones and average response functions for each river reach were included in the SRBM. This approach links many of the capabilities of surface and ground water flow models. Evaluation of an artificial recharge scenario approximately reproduced estimates made by direct simulation in a ground water flow model. The example demonstrated that the method can produce reasonable results but interpretation of the results can be biased if the simulation period is not of adequate duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号