共查询到19条相似文献,搜索用时 76 毫秒
1.
2015世界互联网大会期间嘉兴市大气细颗粒物污染特征及来源研究——以单颗粒气溶胶质谱技术为例 总被引:2,自引:0,他引:2
基于单颗粒气溶胶质谱技术,于2015年12月12—23日互联网大会期间开展了嘉兴市细颗粒物污染特征和来源研究.结果显示,观测期间共捕捉到5次不同的污染过程,分别为:管控期的区域输送(P1)-清洁天(P2)-本地排放(P3)过程,以及管控后的污染反弹(P4)-重污染程(P5)过程.污染期间(P1、P5),硝酸盐含量及比例均有显著增加,并且增加的主要是老化的硝酸盐颗粒,表明硝酸盐的二次转化对长三角地区高浓度细颗粒物形成具有重要影响.受管控措施和南下的强冷空气影响,会议期间,除有机碳和生物质燃烧组分外,PM_(2.5)质量浓度及其它各组分浓度均有不同程度的下降.管控措施解除后(P5),受区域输送和本地污染物积累共同作用,颗粒物浓度开始反弹并持续升高,硝酸盐和EC组分均有明显增加,并且呈现出早、晚高峰值.源解析结果显示,P5期间颗粒物浓度反弹与机动车尾气排放密切相关.研究表明,实施管控措施对降低机动车尾气排放和PM_(2.5)质量浓度、改善环境空气质量等效果显著. 相似文献
2.
濮阳市作为京津冀周边地区大气污染传输通道城市之一,秋冬季重污染天气频发,空气污染问题严峻.为了研究濮阳市秋冬季大气细颗粒物污染特征及其主要来源,于2017年10月15日至2018年1月13日在濮阳市3个国控点对PM_(2.5)进行了手工膜采样与化学组分分析,并结合PMF受体模型,开展了细颗粒物来源解析研究.结果表明,濮阳市2017年秋冬季PM_(2.5)平均质量浓度为94. 16μg·m~(-3),濮水河管理处的污染状况最严重,进入采暖季后3站点均表现为重度及严重污染事件频发,轻度污染发生频率降低,重污染发生时NO_2与CO浓度升高明显. PM_(2.5)中的主要组分为水溶性离子(52. 33%)、碳质组分(25. 32%)和地壳元素(0. 08%),NO_3~-的含量高而SO_4~(2-)的浓度水平较低.重污染发生时,PM_(2.5)中水溶性离子、OC、EC和K浓度都出现了明显的升高,而地壳元素浓度降低.采样期间濮阳市的硫氮转化率水平较高,大气氧化性较强,硫氮转化促进了重污染的发生.濮阳市2017年NOx、CO和VOCs排放量较高,来源解析结果表明,濮阳市秋冬季PM_(2.5)主要来源分别为二次无机盐(37%)、工业源(16%)、二次有机气溶胶SOA(14%)、生物质燃烧源(12%)、移动源(9%)、燃煤源(7%)和扬尘源(4%).可见,二次转化在濮阳重污染的形成过程中起到重要作用,要减轻大气细颗粒物污染,需要重点控制工业源、生物质燃烧、移动源和民用散煤燃烧的排放. 相似文献
3.
近年来,我国北方采暖期的大气污染问题备受关注.以2015年11月24日至12月4日石家庄地区一次重污染过程为例,采用大气细颗粒物实时在线源解析技术,对不同时段细颗粒物来源解析结果和各类源粒径分布、重污染期间各类源的质谱特征,结合气象条件进行综合分析.结果表明:重污染期间主要污染物来源为燃煤、工业工艺、机动车尾气和二次无机源;低压、静稳条件和低空传输共同作用下,以燃煤及工业工艺源排放颗粒物为主的细颗粒物严重累积,二次转化加剧,导致此次重污染的发生;来自燃煤源的颗粒物以混合碳为主,工业工艺源以金属为主,机动车尾气源以元素碳和金属锰为主,纯二次无机源以二次无机离子为主,来自扬尘源的颗粒物以铝、钙、铁和硅酸盐为主,生物质燃烧源以左旋葡聚糖LEV为主,餐饮源以有机酸为特征信号;与重污染前后不同,八类源于重污染发生期间在整个粒径段呈现均匀分布状态. 相似文献
4.
抗战胜利70周年阅兵纪念活动空气质量保障前后,利用位于石家庄市大气自动梯度站20 m处单颗粒气溶胶质谱仪(SPAMS)对大气细颗粒物来源进行了解析.结果表明,阅兵活动当日,大气细颗粒物的首要污染源为机动车尾气(20.9%)和燃煤(20.6%),与空气质量保障前后相比,两类源的贡献均出现不同程度的降低,且颗粒物数浓度处于较低水平,保障措施起到了较好的效果,其中\"控车\"和\"控煤\"效果更为显著.来自机动车尾气的颗粒以短链元素碳和Mn为主,来自燃煤源的颗粒物以有机碳为主,来自工艺工业源的颗粒物以有机碳和金属为主,来自扬尘源的颗粒物以硅酸盐和钙为主.保障措施结束后,颗粒物浓度迅速攀升,是低压静稳不利气象条件和东南方向低空传输共同作用结果,其中扬尘和机动车尾气的贡献增长较为突出. 相似文献
5.
自贡市大气颗粒物污染特征及来源解析 总被引:1,自引:0,他引:1
利用自贡市大气监测数据、同期气象数据以及颗粒物源解析在线监测资料,对颗粒物污染的特征及成因进行研究.结果表明:颗粒物年均浓度受浮尘天气影响明显,季均浓度呈冬高夏低变化,月均浓度呈"U"字形变化,日均浓度呈双峰型变化;颗粒物与降水、温度、气压、风速存在相关性,与相对湿度无相关性,PM10、CO、NO2、SO2、O3浓度对PM2.5浓度变化影响显著;PM2.5主要成分为元素碳、有机碳、富钾颗粒等,主要来源为机动车尾气、燃煤、工业工艺源等. 相似文献
6.
采集北京市2014年冬、春、夏、秋4个季节代表月1、4、7、10月的大气细颗粒物PM2.5样品,分析研究了PM2.5质量浓度、化学特征、季节变化和污染成因.同时,采用正交矩阵因子分析法(PMF)对PM2.5进行了来源解析.结果表明,北京市2014年PM2.5年均浓度为87.74μg/m3,是国家环境空气质量标准年均浓度限值的2.5倍.轻、重污染期间,PM2.5浓度较常日分别增加了1.5和3.9倍,其季节变化表现为冬季 >夏季 >秋季 >春季.地壳元素Mg、Al、Fe、Ca、Ti在轻度污染和重度污染期间较常日略有升高,分别是常日浓度的1.1~1.2倍和1.2~1.5倍.污染元素S、Pb、Zn、Cu浓度变化显著,轻度污染和重度污染期间分别是常日浓度的1.3~2.7倍和1.9~5.9倍.S元素是PM2.5中受人为活动影响较为严重的组分,其相应的SO42-年均浓度为13.43μg/m3,在轻度污染和重度污染期间分别是常日浓度的2.7和5.9倍.硫酸盐的形成主要受O3浓度、温度、相对湿度等气象要素的协同影响,较高的O3浓度、较高温度和相对湿度有利于硫酸盐的生成.PM2.5主要来源于机动车排放、燃煤、地面扬尘和工业排放,其贡献率分别为37.6%、30.7%、16.6%和15.1%. 相似文献
7.
重庆市主城区大气细颗粒物(PM_(2.5))浓度从1990s的100μg·m~(-3)下降至当前的约70μg·m~(-3),但仍高于环境标准限值.为探讨重庆市主城区PM_(2.5)化学组成与来源特征,于2012—2013年在渝北区大气超级站利用四通道采样仪连续采集了颗粒物样品,分析了其中水溶性离子、碳质组分和无机元素含量.采样期间,重庆市主城区大气PM_(10)和PM_(2.5)的年日均浓度分别为103.9和75.3μg·m~(-3),扩散条件不利的冬季,细颗粒物污染较为严重.受静稳天气影响的1月和2月,受沙尘影响的3月,及二次转化显著的6月是重庆市细颗粒物污染较重的月份.重庆市PM_(2.5)组成以有机物(OM,30.8%)为主,其次为硫酸盐(SO_4~(2-),23.0%)、硝酸盐(NO_3~-,11.7%)、铵盐(NH_4~+,10.9%)、地壳物质(Soil,8.2%)、元素碳(EC,5.2%)、K~+(1.1%)、Cl~-(1.0%)和微量元素(Trace,0.6%).较高的SO_4~(2-)浓度和逐步上升的[NO_3~-]/[SO_4~(2-)]比值反映了重庆市燃煤污染较重,同时机动车污染比例逐步增加.采用主因子分析/绝对主因子得分法解析了重庆城区细颗粒物5类主要来源是:二次粒子(41.7%)、燃煤(15.6%)、建筑/道路尘(12.4%)、土壤尘(11.0%)和工业尘(10.4%),通过各污染源季节变化及与其他结果对比,该源解析结果能够较可靠反映重庆市细颗粒物的来源信息. 相似文献
8.
9.
10.
为了对西安市冬季重污染过程中的细颗粒物进行动态源解析,于2016年12月5-22日,利用SPAMS(单颗粒气溶胶质谱仪)在西安市城市运动公园开展连续观测.将观测期分为4个阶段,结合气象条件对不同阶段细颗粒物的污染特征进行分析比较.依据质谱特征,将所采集到的颗粒分为EC(元素碳)、OC(有机碳)、ECOC(混合碳)、HM(重金属)、LEV(左旋葡聚糖)、SiO3(矿尘)、K(钾)、Na(钠)、HOC(有机大分子)及Other(其他)类.结果表明:观测期间所采集到的OC类颗粒物数量最多,在重污染阶段OC、K和EC类颗粒物占颗粒总数的70%以上,是重污染天气的主要组成颗粒.在雾霾消散期,OC、LEV和SiO3类颗粒是主要类型颗粒物.根据颗粒物的化学类型及离子特征,利用PMF(正交矩阵因子分解)模型法得到6种污染源贡献率分别为27.7%(燃煤源)、22.3%(二次污染源)、20.4%(交通源)、10.4%(生物质燃烧源)、9.7%(工艺过程源)、6.5%(扬尘源)及3.0%(其他未知源).研究显示:在重污染阶段,燃煤源与交通源占比大幅上升,与二次污染源共同造成了此次重污染天气;在雾霾消散期,扬尘源及生物质燃烧源成为大气细颗粒物的主要污染源. 相似文献
11.
2014年10月8日~11月25日,在北京城市点位采用颗粒物多组分在线监测技术与单颗粒气溶胶质谱(SPAMS)两种方法测定颗粒物化学组分.基于颗粒物在线多组分监测技术得到的受体数据,采用ME2模型进行解析(OC-ME2);基于SPAMS的观测数据,采用ART-2a和ME2两种方法进行来源解析.SPAMS-ART2a方法解析得到6种颗粒物污染源,而SPAMS-ME2和OC-ME2均确定了5种来源.每种方法都识别出了扬尘源、机动车尾气、燃煤源、工艺过程源和二次源.结果表明:3种方法的解析结果均显示机动车尾气(25.43%~28.84%)和二次源(22.55%~33.50%)是颗粒物的主要来源,其次是燃煤源(20.16%~21.21%)和工艺过程源(12.01%~15.17%);不同方法解析出的同种源在对颗粒物(PM)的分担率与贡献时间变化上存在较大的差异,这可能与采样方法、化学分析方法和数据分析方法等有关.对APEC会议期间主要污染源类特征进行研究,3种方法解析结果中的首要污染源均是机动车尾气(29.17%~44.18%),其贡献均高于非会议期间(23.59%~28.79%),表明在此期间机动车尾气对颗粒物的产生具有重要影响. 相似文献
12.
大气PM2.5是当前我国城市和区域面临的最突出的大气污染问题,然而PM2.5及其关键组分污染的来源不清,严重制约了人们对PM2.5 的科学认知和污染防控的步伐.本研究以2013年1月中国东部地区一次典型重污染过程为研究案例,利用CAMx三维模型中耦合了物种示踪机制的颗粒物来源追踪方法,探讨和揭示了中国东部地区代表性城市上海及周边地区共4个源区(上海、苏南、浙北、大区域)、8类污染源(包括燃烧源、生产工艺过程、流动源、生活面源、挥发源、扬尘源、农业源、天然源)对上海城区大气中PM2.5及其关键组分包括水溶性无机离子(SO2-4、NO-3、NH+4)、元素碳(EC)和有机碳(OC)的污染贡献.研究结果表明,2013年1月份中国东部出现严重灰霾污染期间,上海城区PM2.5的主要区域贡献为上海本地污染源排放累积(PM2.5浓度贡献平均为55.4%±22.3%)和长距离输送(38.4%±20.0%).上海地区8类主要排放源中,扬尘源贡献均值最大,达到30.7%±31.8%,其次为燃烧源18.2%±15.6%、流动源18.6%±17.5%、挥发类源16.9%±18.0%.对上海市PM2.5组分的源解析研究发现,燃烧源对细颗粒物中硫酸盐和硝酸盐的浓度贡献最大,其浓度贡献分别达到56.2%和55.9%.铵盐中72.4%来源于挥发类源贡献,元素碳约78.3%来自于交通源贡献.挥发类源排放和流动源是主要的有机气溶胶贡献源,浓度贡献分别为36.2%和32.5%. 相似文献
13.
基于成都市大气环境超级观测站气态污染物和PM2.5中组分在线监测数据,对2019~2020年成都市3次灰霾污染过程气象要素和组分特征进行分析,采用CMB模型模拟获得研究期间PM2.5污染来源及变化趋势,剖析各污染过程成因.结果表明:(1) 3次污染过程均发生在相对湿度和温度持续上升,风速和边界层高度持续降低的不利气象条件下,日均相对湿度均大于70%,日均温度均大于8℃,日均风速均低于0.8 m·s-1,日均边界层高度均低于650 m;(2) 3次污染过程中主要组分均为NO-3、 OC、 NH+4和SO4 2-,其中NO-3质量浓度和占比污染时段较清洁时段增长倍数均高于其他组分,分别增加了1.47~2.09倍和0.22~0.35倍,NO-3是成都市冬季PM2.5污染的关键组分;(3) ... 相似文献
14.
受到供暖影响,北方城市秋冬季的大气细颗粒物(PM2.5)浓度升高,空气污染加剧.利用气溶胶化学组分监测仪、七波段黑碳仪以及大气多金属元素在线监测仪于2019年10月25日至11月17日在西安市开展高时间分辨率PM2.5化学组分在线监测,分析采暖季过渡期PM2.5 污染特征,同时结合正定矩阵因子分解模型解析PM2.5 来源.结果表明,观测期间ρ(PM2.5)平均值为(78.3±38.5)µg·m-3,主要化学组分为有机物(OA)、二次无机离子(SIA)和粉尘,其占比分别为38.7%、31.6%和21.2%,其中ρ(SO2-4)、ρ(NO-3)和ρ(NH4+)平均值分别为(4.0±3.1)、(14.9±13.7)和(5.8±4.8)µg·m-3,主要金属ρ(K)、ρ(Ca)和ρ(Fe)平均值分别为(1.0±0.4)、(1.5±1.1)和(1.4±0.9)µg·m-3,BC(贡献率为5.7%)、Cl-(贡献率为1.3%)及微量元素(贡献率为1.5%)对PM2.5的贡献率相对较低.在污染发展和维持阶段,OA和SIA浓度的增加幅度可达137.7%~537.0%,在污染消散阶段则仅有粉尘浓度呈增长之势.来源解析结果显示二次源、生物质燃烧源、扬尘源、机动车源、工业源和燃煤源是观测期间PM2.5的主要来源,分别贡献了29.1%、21.1%、15.3%、12.9%、11.4%和10.2%,其中二次源和生物质燃烧源在污染发展和维持阶段贡献率较高,扬尘源在污染消散阶段贡献率较高. 相似文献
15.
为探究城市不同功能区大气PM2.5污染水平、成分季节差异特征以及来源,采集了省会城市济南市2019年不同季节(春、秋、冬)3类典型功能区(城市市区、工业区、城乡结合区)和环境背景点植物园区的PM2.5样品,对其浓度[ρ(PM2.5)]、化学组分(水溶性离子、碳质组分、元素)和来源进行分析.结果表明采样期间3类功能区ρ(PM2.5)在空间上呈现:工业区[(89.88±49.25)μg·m-3]>城乡结合区[(86.73±57.24)μg·m-3]>城市市区[(70.70±44.89)μg·m-3],远大于植物园区[(44.36±21.54)μg·m-3].各功能区ρ(PM2.5)秋冬季明显高于春季,冬季最高值出现在城乡结合区,春季和秋季均为工业区最高.工业区各季PM2.5中的水溶性离子浓度较高,主要的水溶性离子NO-3 相似文献
16.
17.
为探讨北京冬季大气细颗粒物(PM2.5)中有机气溶胶的浓度水平、分布特征和来源变化,对2016年11月10日~12月10日采集的北京大气PM2.5样品进行气相色谱-质谱测定,定量了129种颗粒有机物(POM),约占有机物总量的(9.3±1.2)%.其中含量最高的是糖类,仅左旋葡聚糖即可占到定量有机物的18%,其次是正构烷酸、正构烷烃、二元羧酸和多环芳烃.根据POM示踪物的变化特征,分析了供暖和生物质燃烧传输对北京冬季有机气溶胶的影响.相比于非供暖期间,供暖期间化石燃料示踪物藿烷的质量浓度及在有机物中的占比都明显升高,各组分间的分布也更加趋向于燃煤排放的特征.正构烷烃主峰碳数和奇偶分布的变化,反映了化石燃料贡献增强的影响.生物质燃烧示踪物左旋葡聚糖的浓度权重轨迹(CWT)模型结果表明,北京周围区域的秸秆燃烧污染会通过传输影响北京的有机气溶胶组成.利用分子示踪-化学质量平衡(MM-CMB)模型对2016年北京冬季有机碳(OC)进行了来源解析,并与2006年的结果进行比较,以定量10年间各污染来源贡献发生的变化.2016年与2006年相比,机动车对有机气溶胶贡献明显增加,燃煤和木材燃烧的贡献则大幅度降低,餐饮排放的贡献也不容忽视.因此,控制机动车和餐饮源的排放对改善北京冬季PM2.5污染问题至关重要. 相似文献
18.
William F. Christensen Ann M. Dillner James J. Schauer C. Shane Reese 《Environmetrics》2007,18(8):859-869
19.
基于区域大气环境模拟系统RegAEMS开发了大气污染物来源解析模块APSA,以京津冀及周边\"2+26\"城市为研究对象,模拟2017年12月26日~2018年1月2日该地区一次PM2.5重污染过程,对PM2.5进行区域和行业来源解析.结果表明:本次污染持续时间长、影响范围广、污染程度重,\"2+26\"城市PM2.5小时最大值为201~507μg/m3,RegAEMS可较好模拟出PM2.5时空分布;区域来源解析表现为外围区域对\"2+26\"边界城市影响较大,贡献为15.3%~57.5%,\"2+26\"中部城市受外围区域影响较小,贡献为0.3%~8.4%,区域传输特征明显,受近地面风场影响较大;行业来源表现为区域内生活源、工业源贡献较大,分别为26.6%~45.8%、16.4%~37.8%,交通源占比13.0%~35.9%.本文研究表明RegAEMS可以实现重污染过程PM2.5的数值模拟和来源解析,在大气污染精准管控方面具有较好应用前景. 相似文献