首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

2.
零价铁与厌氧微生物协同还原地下水中的硝基苯   总被引:1,自引:0,他引:1  
通过间歇式实验,考察了零价铁与厌氧微生物协同还原地下水中硝基苯的效果。实验结果表明,由零价铁腐蚀为厌氧微生物提供H2电子供体还原硝基苯的效果明显优于零价铁和微生物单独作用,硝基苯去除率分别提高21.8%和57.0%。弱酸性条件有利于协同反应进行,当初始pH为5.0和6.0时,4 d后硝基苯去除率比初始pH为7.0时的提高74.4%和35.2%。增加零价铁投加量可提高协同还原的效果,零价铁最佳投加量为250 mg/L。零价铁腐蚀产生的Fe2+无法作为电子供体被微生物利用,但可作为无机营养元素促进协同过程。由于零价铁产H2速率受表面覆盖物影响不明显,在地下水修复过程中可保证协同效果并延长零价铁的使用寿命。  相似文献   

3.
In this study, CO2 was bubbled into Fe0-contained solution to create an acidic environment favorable to reduction of aqueous nitrate under various water qualities. Results showed that nitrate of 30 mg l(-1) could be removed from solutions almost completely within 30 min under the conditions of 2 g Fe0 l(-1) and CO2 bubbling flow rate of 200 ml min(-1). It was observed from the Fe0/CO2 system that one mole of nitrate reduced by Fe0 led to the formation of 6.6 mol of ferrous ions. The removal of nitrate increases with increasing Fe0 dosage, however, the removal makes no difference as the Fe0 is applied at a relatively higher dosage. In the system with various water qualities, nitrate removal was inhibited significantly in the presence of humic acid. Calcium ions strongly retard nitrate removal, whereas chloride ions promote the reduction of nitrate in a significant way. Sodium ions impose only slight inhibitive effect on nitrate removal. Water molecule in the studied system can be of significance due to its competitive capability of electrons released from Fe0.  相似文献   

4.
A new approach to simultaneously remove nitrogen monoxide (NO) and sulfur dioxide (SO2) by zero valent iron (ZVI) was investigated. Three different parameters, temperature, flux, and ZVI dosage, were tested in fluidized ZVI column studies containing 500 ppmv of NO and SO2, respectively. Under the ZVI dosage of 0.5 g at flux of 0.6 L/cm2 x min for temperature 573 K, there is neither NO nor SO2 reduction. For 623 K and 673 K, complete removal for NO and > 90% removal for SO2 were achieved. For temperatures of 723 K and 773 K, 100% removal was achieved for both NO and SO2. The amounts of NO or SO2 reduction (as milligrams of NO or SO2 per gram ZVI) increased as temperature increased, and linearities were observed with both correlation coefficients > 0.97. Compared with NO, SO2 had earlier breakthrough because of a slower diffusion rate and less reactivity but higher mass reduction because of a higher molecular weight for SO2 (64 g/mol for SO2 and 30 g/mol for NO). At same temperature, both NO and SO2 reductions (as milligrams of NO or SO2 per gram of ZVI) were constant regardless of either flux or ZVI dosage variation, but breakthrough time was affected by both flux and ZVI dosage. A parameter weight of ZVI/flux (W/F) was developed to represent these two parameters at the same time to assess the breakthrough time of NO and SO2. Higher breakthrough time was achieved for higher W/F value. Moreover, interestingly, longer breakthrough time and more NO and SO2 mass reduction were achieved for combined NO and SO2 than individual NO or SO2 treated by ZVI, and both oxidation and reduction reactions occurred instead of a reduction reaction only. Chemical reactions among ZVI/NO, ZVI/ SO2, and ZVI/NO/SO2 were also proposed and verified by X-ray diffraction analyses.  相似文献   

5.
电化学脱硝过程参数的响应曲面优化研究   总被引:1,自引:0,他引:1  
以Ti/IrO2-TiO2-RuO2为阳极,Cu/Zn合金电极为阴极,在无隔膜电解池中对这一新构造电极对的脱硝氮性能进行了研究。为了有效结合阴极硝氮还原能力和阳极氧化能力,采用响应曲面法中的Box-Behnken设计优化了对电化学脱硝过程有显著影响的4个重要因素:氯化钠含量、电流密度、pH和初始硝氮浓度。优化结果表明,相对于pH和初始硝氮浓度,氯化钠含量和电流密度对脱硝性能影响更大,而阴极硝氮还原性能主要受初始硝氮浓度、pH的影响。以6 h内电极对脱氮百分率为响应量,优化得最佳电化学脱硝过程参数为:氯化钠含量,1 g/L;电流密度,24.99 mA/cm2;pH,1.81;初始硝氮浓度100 mg/L。在此实验条件下,6 h内电极对脱氮百分率预测值为99.84%。通过3次重复验证实验,确认实际6 h内电极对脱氮百分率为91.34%。预测值与实测值两者相差不大,由此可知,Box-Behnken设计是一种优化电化学脱氮实验参数的有效方法,经过优化后的电极对具有较佳的脱氮效率。  相似文献   

6.
以钛基氧化物涂层材料(Ti/SnO2-Sb2O5-IrO2)为阳极,碳纳米管修饰的石墨(GE—CNT)为阴极构建电化学系统进行硝酸根(NO3-)去除研究,考察了阴极材料、阴极电位和pH值对电化学法去除水中NO[的影响,同时检测了铵离子(NH4+)和亚硝酸根(NO2-)的生成量。结果表明,利用碳纳米管修饰的石墨阴极可获得较好的硝态氮去除效果;随着阴极电位负移,NO3-去除率随之升高;酸性条件下NO3-去除率最高,NH;生成量也更多。对于由NO3-转化产生的NH4+,在氯离子存在条件下再次进行电化学处理120min,其去除率可达97.1%。  相似文献   

7.
Jeong JY  Kim HK  Kim JH  Park JY 《Chemosphere》2012,89(2):172-178
The present study investigates the performance of the zero valent iron (ZVI, Fe0) packed bed bipolar electrolytic cell for nitrate removal. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous column experiments for the simulated groundwater (initial nitrate and electrical conductivity of about 30 mg L−1 as N and 300 μS cm−1, respectively), above 99% of nitrate was removed at the applied potential of 600 V with the main anode placed on the bottom of reactor. The influx nitrate was converted to ammonia (20% to maximum 60%) and nitrite (always less than 0.5 mg L−1 as N in the effluent). The optimum packing ratio (v/v) of silica sand to ZVI was found to be 1:1-2:1. Magnetite was observed on the surface of the used ZVI as corrosion product. The reduction at the lower part of the reactor in acidic condition and adsorption at the upper part of the reactor in alkaline condition are the major mechanism of nitrate removal.  相似文献   

8.
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl(-) increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl(-) at total mineralization was detected when initial diuron concentration was 13.8 mg L(-1). For N species, the final concentrations of NO3(-) and NH4+ after 60 min of reaction time were 0.28 and 0.19 mg L(-1), respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron.  相似文献   

9.
Removal of thiobencarb in aqueous solution by zero valent iron   总被引:2,自引:2,他引:0  
A cost-effective method with zero valent iron (ZVI) powder was developed for the purification of thiobencarb (TB)-contaminated water. The removal treatment was performed in the batch system. A sample solution of 10 ml containing 10 microg ml(-1) of TB could be almost completely treated by 100mg of ZVI at 25 degrees C for 12h of treatment time. Since the formation of chloride ion in the aqueous solution during the treatment of TB was observed, the removal of TB with ZVI may contain two processes: reduction (degradation) and adsorption. Because the present treatment for TB is simple, easy handling and cheap, the developed technology with ZVI can contribute to the treatment of agricultural wastewaters.  相似文献   

10.
为了更为有效地利用微生物燃料电池(MFC)所产电能并提高零价铁(ZVI)去除污染物工艺的效率,构建了微生物燃料电池-零价铁(MFC-ZVI)耦合工艺,并将其应用在三价砷水溶液的处理中。实验结果表明,在该耦合系统中,ZVI直接利用了MFC所产生的低压电能,铁腐蚀速率和除砷效率因此得到显著提高。实验所用MFC的最高稳定产电电压为0.52 V,电解过程中MFC的库伦效率为4.59%,以二价铁离子计算的电流效率为72.74%。反应结束后,溶液的pH值由反应前的8.0升高到8.5。两体系中铁氧化物产生量的差异以及铁氧化物形态分布的不同可能是导致其除砷效果不同的主要原因。  相似文献   

11.
ortho-Nitrochlorobenzene (o-NCB) in soil poses significant health risks to human because of its persistence and high toxicity. The removal of o-NCB by both zero-valent iron (ZVI) and chemical oxidation (persulfate) was investigated by batch experiments. The o-NCB removal rate increases significantly from 15.1 to 97.3 % with an increase of iron dosage from 0.1 to 1.0 mmol g?1. The o-NCB removal rate increases with the decrease of the initial solution pH, and a removal efficiency of 90.3 % is obtained at an initial pH value of 6.8 in this combined system. It is found that temperature and soil moisture could also increase the o-NCB removal rate. The o-NCB degradation rate increases from 83.9 to 96.2 % and from 41.5 to 82.4 % with an increase of temperature (15 to 35 °C) and soil moisture (0.25 to 1.50 mL g?1), respectively. Compared to the persulfate oxidation system and ZVI system, the persulfate–iron system shows high o-NCB removal capacity. o-NCB removal rates of 41.5 and 62.4 % are obtained in both the persulfate oxidation system and the ZVI system, while the removal rate of o-NCB is 90.3 % in the persulfate–iron system.  相似文献   

12.
为了研究堆肥+零价铁混合可渗透反应墙(PRB)修复黄土高原地下水中铬铅复合污染的可行性,分别用堆肥、零价铁、堆肥+ 零价铁、堆肥+ 零价铁+活性炭为反应介质,通过模拟柱实验考察PRB修复铬铅复合污染黄土高原地下水的效果。结果表明,在实验进行30 d后当反应柱1和2对六价铬的去除率接近于零,而且对二价铅的去除率迅速下降时,反应柱3对2种污染物仍保持较高的去除率;反应介质质量比为10:2:1的反应柱4和质量比为10:1:2的反应柱5对污染物的去除效果均优于质量比为10:1:1的反应柱3;反应50 d后,添加活性炭的反应柱6对2种污染物的去除率仍在90%。这说明使用堆肥+零价铁混合可渗透反应墙修复黄土高原地下水中铬铅复合污染是可行的;且以堆肥+零价铁作为介质的反应柱去除效果优于单独以堆肥或铁粉为介质的反应柱;增加铁粉或堆肥的用量有利于铬铅复合污染的去除;且同时添加活性炭更有助于污染物的去除。  相似文献   

13.
Cho HH  Park JW 《Chemosphere》2006,64(6):1047-1052
Effects of surfactants and natural organic matter (NOM) on the sorption and reduction of tetrachloroethylene (PCE) with zero valent iron (ZVI) were examined in this study. PCE reduction by ZVI depended on the ionic type of the surfactants. The removal of PCE and production of TCE with non-ionic Triton X-100 and cationic hexadecyltrimethyl-ammonium (HDTMA) at one-half and two times the critical micelle concentration (CMC) were 1.2-1.8 times higher than without surfactants because of the enhanced PCE partitioning and surface concentration by the sorbed surfactants. When anionic sodium dodecyl benzene sulfonate (SDDBS) at one-half and two times CMC and NOM at 20 mg l(-1) and 50 mg l(-1) concentrations were used, the removal of PCE doubled and TCE production decreased. In the presence of SDDBS, TCE production by ZVI was lower than with HDTMA and Triton X-100 while PCE removal was higher than with the other surfactants.  相似文献   

14.
纳米铁-微生物耦合体系去除硝酸盐的影响因素研究   总被引:1,自引:1,他引:0  
采用液相还原法制备出纳米铁粒子,并与自养反硝化细菌耦合,以解决单独使用生物反硝化和纳米铁还原法的不足。本实验在纳米铁-微生物耦合体系可以有效还原硝酸盐的基础上,研究了pH、温度和DO等环境因素对该耦合体系脱氮速率和产物的影响,以期通过优化参数达到最好的脱氮效果。结果表明,该体系在中性条件下能够快速将硝酸盐还原,随pH升高,氨氮比例无显著变化,均在40%左右,但还原速率有所下降;随温度的升高,氨氮比例有所上升,而反应速率明显升高,但该体系在5℃时仍能将硝酸盐完全去除;耦合体系中的DO过高或过低都会导致产物中氨氮比例的增加,0.4 mg/L左右为较适宜DO水平,但对硝酸盐还原速率的影响不大,当DO为0.8 mg/L时,硝酸盐仍可以在8 d内完全去除。因此,该耦合脱氮体系对pH、温度和DO的适应能力较强,有利于实际地下水的原位修复。  相似文献   

15.
Debromination of decabromodiphenyl ether (deca-BDE) by microbe and by zero-valent iron (ZVI) has been reported previously. However, no study has indicated the presence of microorganisms and their effect on ZVI-mediated reduction of deca-BDE. Synergistic degradation of deca-BDE by an enrichment culture and ZVI was studied. It was found that synergistic effects enhanced the debromination of deca-BDE as well as promoting the reduction of lower brominated products. ZVI stimulated microbial debromination by serving as an electron donor. Correlation analysis also confirmed that ZVI was capable of enhancing microbial population in the debromination of deca-BDE. Conversely, the enrichment culture produced acid which maintained pH stability and stimulated the oxidation of ZVI. The enrichment culture supplied its energy requirements by the oxidation of ZVI and concomitant reduction of deca-BDE, but incapable of growth and reduction of BDE-209 without ZVI and vice versa. Compared to the initial culture, the microbial community of the enrichment culture became dominated by several bacterial genera based on the results of 16S rRNA-gene pyrosequencing.  相似文献   

16.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment.  相似文献   

17.
以模拟的厌氧消化液为处理对象,通过小试实验,考察不同初始磷浓度Cp、Ca/P物质的量比、pH和温度下,碳酸根(CO3 2-)对磷酸钙沉淀反应回收磷的影响;利用扫描电镜(SEM)、x射线衍射仪(XRD)和傅里叶变换红外光谱(FT.IR)对沉淀产物进行表征。结果表明,高浓度的CO3 2-对以磷酸钙沉淀反应去除和回收磷的效率影响较大;Cp相同时,CO3 2-浓度(CCO3^2-)越大,P的去除率越低,低C,(20mg/L)时尤为显著;当CCO3^2-相同时,随着Cp的增大,反应速率加快,P的去除率逐渐升高,但升高幅度越来越小;增大Ca/P比和pH能提高P的去除率,降低CO3 2-对磷酸钙沉淀反应的抑制作用,综合考虑实际效果,应选择Ca/P比为3.33,pH为9.0作为适宜的反应条件;升高温度对降低CO3 2-对磷酸钙沉淀反应的抑制作用贡献不大。在Cp为60ITIg/L,Ca/P比为1.67,pH为9.0,温度为20℃的条件下,当CCO3^2-为0时,得到的沉淀产物主要为羟基磷灰石HAP;当CCO3^2-为30mmol/L时,得到的沉淀产物为磷酸钙和碳酸合磷灰石的混合物。  相似文献   

18.
Zhang C  Chen Y  Liu Y 《Chemosphere》2007,69(11):1713-1721
In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH > 6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH > 7.51, which indicated that PAO would take predominance over GAO at pH > 7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.  相似文献   

19.
Bae SW  Roh SA  Kim SD 《Chemosphere》2006,65(1):170-175
The effect of the additives on the selective non-catalytic reduction (SNCR) reaction has been determined in a three-stage laboratory scale reactor. The optimum reaction temperature is lowered and the reaction temperature window is widened with increasing concentrations of the gas additives (CO, CH4). The optimum reaction temperature is lowered and the maximum NO removal efficiency decreases with increasing the concentration of alcohol additives (CH3OH, C2H5OH). The addition of phenol lowers the optimum reaction temperature about 100-150 degrees C similar to that of the toluene addition. The volatile organic compounds (VOCs: C6H5OH, C7H8) can be utilized in the SNCR process to enhance NO reduction and removed at the same time. A previously proposed simple kinetic model can successfully apply the NO reduction by NH3 and the present additives.  相似文献   

20.
Wu TN 《Chemosphere》2007,69(2):271-278
This study utilized the electrocatalytic characteristics of nickel electrode to perform degradation of methyl tert-butyl ether (MTBE) in aqueous solution. Lab experiments were conducted in a spiltless bath type cell equipped with a nickel electrode as working electrode, a platinum wire as counter electrode, and an Ag/AgCl electrode as reference electrode. Effects of controlled potential, supporting electrolyte, and solution pH on the efficiency of MTBE removal were examined under the control of the constant-potential conditions. Experiment results showed that the optimum electrolytic condition was operated at 0.35 V in a 1M KOH electrolyte solution, and the initial 20 mgl(-1) MTBE was reduced by 73% within 180 min under the optimum control. As using 1M Na2SO4 and 1M KCl as electrolyte, the efficiency of MTBE removal dropped to 60% and 50% under the similar controls. Comparing with various pH controls, the strong basic condition is favorable for electrocatalytic oxidation of MTBE in the Ni-electrolytic system. The efficiency of MTBE removal showed a rising trend with increasing initial pH of the solution. The formation of a redox NiOOH/Ni(OH)2 layer on the anode surface, which was observed on the SEM image, can explain that nickel plays a mediator role on improving electrocatalytic oxidation of MTBE at 0.35 V in a strong basic condition. The by-products of MTBE degradation were identified as acetone and CO(2) by GC/MS, and the distributions of carbon atoms in acetone, CO2, and MTBE were found 22%, 51%, and 27% through the optimum control of electrochemical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号