首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Spring wheat (Triticum aestivum L. cv. Minaret) was exposed to three CO(2) levels, in combination with two nitrogen fertilizer levels and two levels of tropospheric ozone, from sowing to ripening in open-top chambers. Three additional nitrogen fertilizer treatments were carried out at the lowest and the highest CO(2) level, respectively. Plants were harvested at growth stages 31, 65 and 93 and separated into up to eight fractions to gain information about biomass partitioning. CO(2) enrichment (263 microl litre(-1) above ambient levels) drastically increased biomass of organs serving as long-term carbohydrate pools. Peduncle weight increased by 92%, stem weight by 73% and flag leaf sheath weight by 59% at growth stage 65. Average increase in shoot biomass due to CO(2) enrichment amounted to 51% at growth stage 65 and 36% at final harvest. Average yield increase was 34%. Elevated nitrogen application was most effective on biomass of green tissues. Yield was increased by 30% when nitrogen application was increased from 150 to 270 kg N ha(-1). Significant interactions were observed between CO(2) enrichment and nitrogen application. Yield increase due to CO(2) ranged from 23% at 120 kg N to 47% at 330 kg N. Triticum aestivum cv. Minaret was not very responsive to ozone at 1.5 times ambient levels. 1000 grain weight was slightly decreased, which was compensated by an increased number of grains.  相似文献   

2.
The effects of potassium fertilization and ozone stress were investigated in a clone of Picea abies (L.) Karst, by studies of the uptake of CO(2) by the crowns, the element content, on leaching of the youngest needles, and the longevity of the needles. All plants were exposed to 0.075 microl litre(-1) SO(2) from January to April 1986. The average ozone concentrations applied during the subsequent growing season (May-December) were 0, 0.027, 0.050 and 0.100 microl litre(-1). Half of the trees received liquid fertilizer applications from April to July 1986. CO(2) uptake by the crowns was significantly reduced in non-fertilized plants at ozone doses of 100-200 microl litre(-1) h, whereas similar reductions were recorded in fertilized plants only above an ozone dose of 300 microl litre(-1) h. Independent of the fertilization, however, the concentrations of calcium, magnesium and nitrogen in the needles increased in parallel with the ozone dose, whilst potassium, phosphorus and sulphur showed little response to ozone. In both nutrient regimes, the diffusive loss of elements from chloroform-washed needles was similar and tended to be reduced at the highest ozone concentration, when relating the leachate to the corresponding element content in the needles. Needles formed in the highest ozone treatment were significantly shed during the succeeding year, regardless of the nutrient supply. It appears that increased potassium supply has little compensating effect on ozone stress in spruce.  相似文献   

3.
The uptake of Cd, Se(IV) and Zn by the freshwater alga Scenedesmus obliquus and the subsequent transfer and release budget in Daphnia magna were investigated under different nutrient additions and cell incubation conditions. An increase in ambient phosphate concentrations from 0.5 micromol l(-1) to 50 micromol l(-1) significantly increased the intracellular accumulation of Cd (by 18x) and Zn (by 5x), but decreased the accumulation of Se (by 126x) in the alga. The percentage of these metals distributing in the intracellular pool of algae also increased substantially with increasing ambient P concentrations. Nitrate addition from 5.0 to 200 micromol l(-1) did not influence the uptake of any of the three metals, although a significant decrease in the intracellular Se distribution was observed. Radiolabeled algae under different nutrient manipulations (semi-continuous culture, starvation, and P-pulse treatments) were used to measure trophic transfer assimilation efficiency (AE) in Daphnia. When the algal cells were grown in a semi-continuous culture, starved for N and P, or were treated with P-pulse, the AEs of Cd and Zn were generally independent of the nutritional conditions, but the Se AE was significantly affected by different P levels. The efflux rate constants, determined during 10 d depuration following 7 days of dietary uptake, decreased significantly for Cd and Zn, but were relatively constant for Se with increasing P concentration. N-addition caused no effect on the metal efflux rate constants. P- or N-additions did not influence the release budget (including molting, neonates, excretion and feces) for all three elements in Daphnia. Our study indicated that phosphate enrichment may substantially increase metal uptake in green alga S. obliquus. Responses of trophic transfer in Daphnia to nutrient enrichment were metal specific. P-enrichment can possibly lead to considerable decrease on Se transfer from algae to zooplankton.  相似文献   

4.
Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0-0.5 microg mL(-1) of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 microg g(-1) DW in shoots and from 163.1 to 574.7 microg g(-1) DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

5.
The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues, (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H+ ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development.  相似文献   

6.
Effects of increased ozone (O3) and carbon dioxide (CO2) on polyamine levels were determined in soybean (Glycine max L. Merr. cv. Clark) grown in open-top field chambers. The chamber treatments consisted of three O3 regimes equal to charcoal filtered (CF), non-filtered (NF), and non-filtered plus 40 nl litre(-1) O3 and CO2 treatments equal to 350, 400 and 500 microl litre(-1) for a total of nine treatments. Leaf samples were taken at three different times during the growing season. Examination of growth and physiological characteristics, such as photosynthesis, stomatal resistance, and shoot weight, revealed that increasing CO2 ameliorated the deleterious effects of increased O3. Results from the initial harvest, at the pre-flowering growth stage (23 days of treatment), showed that increasing O3 at ambient CO2 caused increases in putrescine (Put) and spermidine (Spd) of up to six-fold. These effects were lessened with increased CO2. Elevated CO2 increased polyamines in plants treated with CF air, but had no effect in the presence of ambient or enhanced O3 levels. Leaves harvested during peak flowering (37 days of treatment) showed O3-induced increases in Put and Spd at ambient CO2 concentrations. However, increased CO2 levels inhibited this response by blocking the O3-induced polyamine increase. Leaves harvested during the pod fill stage (57 days of treatment) showed no significant O3 or CO2 effects on polyamine levels. Our results demonstrate that current ambient O3 levels induce the accumulation of Put and Spd early in the growing season and that further increases in O3 could result in even greater polyamine increases. These results are consistent with a possible antiozonant function for polyamines. The ability of increased CO2 to protect soybeans from O3 damage, however, does not appear to involve polyamine accumulation.  相似文献   

7.
Beech seedlings were grown under different nitrogen fertilisation regimes (0, 20, 40, and 80 kg Nha(-1)yr(-1)) for three years and were fumigated with either charcoal-filtered (F) or ambient air (O3). Nitrogen fertilisation increased leaf necroses, aphid infestations, and nutrient ratios in the leaves (N:P and N:K), as a result of decreased phosphorus and potassium concentrations. For plant growth, biomass accumulation, and starch concentrations, a positive nitrogen effect was found, but only for fertilisations of up to 40 kg Nha(-1) yr(-1). The highest nitrogen load, however, reduced leaf area, leaf water content, growth, biomass accumulation, and starch concentrations, whereas soluble carbohydrate concentrations were enhanced. The ozone fumigation resulted in reduced leaf area, leaf water content, shoot growth, root biomass accumulation, and decreased starch, phosphorus, and potassium concentrations, increasing the N:P and N:K ratios. A combined effect of the two pollutants was detected for the leaf area and the shoot elongation, where ozone fumigation amplified the nitrogen effects.  相似文献   

8.
Abstract

Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0–0.5 μg mL?1 of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 μg g?1 DW in shoots and from 163.1 to 574.7 μg g?1 DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

9.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

10.
Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O3). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone.  相似文献   

11.
A decline in a Picea abies L. (Karst.) stand in the Fichtelgebirge, NE-Bavaria, FRG has been attributed to a nutritional disharmony-a seasonal imbalance between a high supply of nitrogen, caused by high nitrogen deposition, and a low supply of soil magnesium, caused by soil acidification (Oren et al., 1988a). The nutritional disharmony hypothesis was tested on ten-year-old P. abies saplings in an adjacent stand growing on identical soil. The supply rate of magnesium relative to nitrogen was continuously increased or decreased during three successive growing seasons. Increasing the nitrogen or carbon supply resulted in a small increase in foliar nitrogen concentrations. Magnesium or carbon addition slightly raised the concentration of magnesium in the foliage. Reduction in crown leaf-area did not result in any appreciable changes in nutrient concentrations. Increased N supply decreased foliar Mg concentrations. In spite of the changes in the nutritional status of the needles, gas-exchange rates, pigment concentrations, needle characteristics and growth of twigs and stems did not differ among treatments. It appears that the growth of saplings was unimpaired at the foliar magnesium concentration at which the growth of adjacent mature trees was reduced. Moreover, it was not possible to promote nutritional disharmony in the saplings, including those receiving three times the annual nitrogen input. The study demonstrates that in young, relatively open stands of P. abies, much of the deposited nitrogen is not absorbed by the roots of saplings. Thus, the conceptual model of nutritional disharmony cannot explain forest decline if nitrogen uptake does not increase with deposition. Identifying the processes which control the uptake relative to the supply of all nutrients, and quantifying the rates of nutrient uptake are essential steps in using the conceptual model to explain specific decline symptoms.  相似文献   

12.
Zhou DM  Chen HF  Cang L  Wang YJ 《Chemosphere》2007,67(8):1671-1676
This paper summarizes a study on the application of vertical electric direct-current (DC) to control the migration of metal complexes in soil columns when EDTA/[S,S]-ethylenediaminedisuccinic acid (EDDS) is used to enhance ryegrass uptake of Cu/Zn from contaminated soil. The results show that application of EDTA/EDDS significantly increased ryegrass uptake of Cu/Zn when compared with no EDTA/EDDS application and the Cu/Zn concentrations in all soil solutions sampled at three different levels of the soil column, i.e. 15, 30 and 50 cm. Application of vertical DC electrical field (1.0 V cm(-1)) through top anode (close to the surface) and bottom cathode caused redistribution of Cu/Zn concentrations. Copper/Zn concentrations significantly decreased in soil pore fluid that were sampled in the bottom sections of the column, suggesting an efficient control of the leaching risk of the Cu/Zn complexes when the vertical electrical field is applied. The shoot Cu concentration of ryegrass in the treatments with EDTA/EDDS and electrical field together was 0.46/0.61 times higher than that in treatments without electrical fields.  相似文献   

13.
To evaluate the environmental risk of irrigating crops with treated wastewater, an experiment was conducted using two growth chambers, each offering a different vapour pressure deficit (VPD) for high and low transpiration rates (TR), respectively. One of the two sets of 24 pots planted with 6 week old wheat (Triticum aestivum L.), was placed in each growth chamber, and irrigated in triplicates for 20 days with 8 Zn and Cu solutions (0 and 25 mg Zn/L combined with 0, 5, 15 and 30 mg Cu/L). Water losses from planted and non-planted pots served to measure evapo-transpiration and evaporation, respectively. Pots were monitored for Cu and Zn uptake by collecting three plants (shoot and grain)/pots after 0, 10 and 20 days, and roots in each pot after 20 days, and analyzing these plant parts for dry mass, and Cu and Zn levels. Transpiration rate was not affected by any Cu/Zn treatment, but Cu and Zn uptake increase with the time, irrigation solution level and higher TR, with the roots retaining most Cu and Zn, compared to the shoot followed by the grain. For the shoot and grain, Cu had a significant synergetic effect on Zn uptake, when Zn had slight but insignificant antagonistic effects on Cu uptake. For the roots, Cu and Zn had significant synergetic effect on each other. Regression equations obtained from the data indicate that Cu and Zn levels normally found in treated wastewater (0.08 mg/L) are 300 times lower than those used for the most concentrated experimental solutions (30 and 25 mg/L, respectively) and may, on a long term basis, be beneficial rather than toxic to wheat plants and do not acidify soil pH.  相似文献   

14.

Loessal soil is one of the main cultivated soils in northwest China. Part of its distribution area was irrigated with industrial wastewater in past three decades. This caused heavy metal contamination in the soil. It had induced toxicity on crops and also threatened local human health for now. Based on a field plot experiment, effects of different Cu concentrations (from 45 to 2000 mg kg?1) in loessal soil on spinach plant growth and uptake of mineral nutrients (Zn, Fe, Mg, K, and Ca) by spinach were investigated. The Cu addition increased available concentrations of mineral nutrients in loessal soil and concentrations of Cu, Zn, Mg, and Ca in roots. The translocation of mineral nutrients from roots to leaves was inhibited under Cu addition, inducing their decrease in leaves. The EC10 and EC50 of soil Cu in relative dry weights of leaves were 240.33 mg kg?1 and 1205.04 mg kg?1, respectively. The PLS-PM analysis showed that available concentrations of nutrients in soil were only affected by Cu in soil positively, nutrients in roots were mainly affected by Cu in soil and Cu in leaves positively, nutrients in leaves were mainly affected by Cu in roots negatively, translocation of nutrients in spinach and plant growth were principally affected by Cu in leaves negatively, and the total effect of Cu in leaves on nutrients in roots and leaves, translocation of nutrients in spinach, and plant growth was the highest. Our results indicated that the phytotoxicity of Cu including spinach growth inhibition and mineral disorder in spinach was mainly affected by the Cu concentrations in leaves.

  相似文献   

15.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

16.
Monsant AC  Tang C  Baker AJ 《Chemosphere》2008,73(5):635-642
The phytoextraction of Zn may be improved by applying N fertilizers to increase the biomass and Zn content of shoots. Rhizosphere-pH change from uptake of different N forms will affect Zn phyto-availability in the rhizosphere and Zn phytoextraction. This glasshouse study examined the effect of N form on Zn phytoextraction by Thlaspi caerulescens (Prayon). The plants were grown in a Zn-contaminated soil (total Zn 250 mg kg-1 soil; pHwater 5.7) and supplied with (NH4)2SO4, Ca(NO3)2 or urea [(NH2)2CO]. The form was maintained by applying the nitrification inhibitor dicyandiamide. A biodegradable chelator ethylenediaminedisuccinic acid (EDDS) was included for comparison. The addition of N doubled the shoot biomass. The highest shoot Zn content occurred in the Ca(NO3)2 treatment and was associated with the highest rhizosphere pH. The lowest shoot dry weight occurred in the EDDS treatment. The Zn concentration in the shoots increased as the rhizosphere pH increased. A significant correlation occurred between Ca and Zn concentrations in the shoots. This study demonstrated that Ca(NO3)2 is a more effective treatment than , urea or EDDS for enhancing Zn phytoextraction in a mildly acidic soil.  相似文献   

17.
Patterns of environmental change in the biosphere include concurrent and sequential combinations of increasing ultraviolet (UV-B) and ozone (O(3)) at increasing carbon dioxide (CO(2)) levels; long-term changes are resulting mainly from stratospheric O(3) depletion, greater tropospheric O(3) photochemical synthesis, and increasing CO(2) emissions. Effects of selected combinations were evaluated in tomato (Lycopersicon esculentum cv. New Yorker) seedlings using sequential exposures to enhanced UV-B radiation and O(3) in differential CO(2) concentrations. Ambient (7.2 kJ m(-2 )day(-1)) or enhanced (13.1 kJ m(-2) day(-1)) UV-B fluences and ambient (380 microl l(-1)) or elevated (600 microl l(-1)) CO(2) were imposed for 19 days before exposure to 3-day simulated O(3) episodes with peak concentrations of 0.00, 0.08, 0.16 or 0.24 microl l(-1) O(3) in ambient or elevated CO(2). CO(2) enrichment increased dry mass, leaf area, specific leaf weight, chlorophyll concentration and UV-absorbing compounds per unit leaf area. Exposure to enhanced UV-B increased leaf chlorophyll and UV-absorbing compounds but decreased leaf area and root/shoot ratio. O(3) exposure generally inhibited growth and leaf photosynthesis and did not affect UV-absorbing compounds. The highest dose of O(3) eliminated the stimulating effect of CO(2) enrichment after ambient UV-B pre-exposure on leaf photosynthesis. Pre-exposure to enhanced UV-B mitigated O(3) damage to leaf photosynthesis at elevated CO(2).  相似文献   

18.
The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO(2) and fertilization (two CO(2) treatments, elevated CO(2) and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO(2) enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO(2) and N fertilization amplified some element unbalances such as the K/N-ratio.  相似文献   

19.
This study emphasizes nutrient balance of soils in the farmland application of composted biosolid wastes. The loading rates of plant nutrients following the compost application to farmland in Japan were estimated and compared with the nutrient uptake of agricultural plants. Results show that the current compost application in Japan can meet the requirements of agricultural plants for plant nutrient Ca, except for K, Mg, P, Fe, Mn, Cu, and Zn. The compost application could realize the safe disposal of biosolid wastes and the effective recycling of plant nutrients in composts to soils without causing heavy metal accumulation. The application manner of composts affects the heavy metal accumulation in farmlands. Field examination indicates that the excessive compost application has led to the heavy metal accumulation in compost-amended farmlands. Measuring the nutrient balance in compost-amended farmlands is well suitable for explaining the accumulation of heavy metals, such as Cu and Zn.  相似文献   

20.
A Zn- and pH-buffered medium was used to study the accumulation of Zn in batch-cultured algae (Selenastrum capricornutum Printz.). All experiments were carried out using (65)Zn radiotracers, which were measured by gamma-ray spectrometry. Zinc was applied in the presence of nitrilotriacetic acid (NTA), leading to free Zn(2+) concentrations ranging from 4.2 x 10(-11) to 1.6 x 10(-7) mol litre(-1). During the 75-h experiments, the rates of Zn influx and efflux were determined, the latter with full consideration for algal growth rates. Algal growth stopped completely at a free Zn(2+) concentration of 1.6 x 10(-8) mol litre(-1). Initial Zn binding was determined and, based on free Zn(2+) concentrations, presented by the apparent dissociation constant K(diss) and capacity C as 4.6 x 10(-9) mol litre(-1) and 19.8 x 10(6) mol gDW(-1), respectively. The rate constant of Zn efflux could be calculated as a constant 0.021 +/- 0.003 h(-1), irrespective of the Zn concentrations applied. The rates of Zn influx were expressed by the V(max) and K(M) values as 3.3 x 10(-10) mol gDW(-1) s(-1) and 6.3 x 10(-9) mol litre(-1), respectively. These values, which are based on applied free Zn(2+) concentrations, are compatible with the operation of a high-affinity low-concentration carrier mechanism. The results suggest that, under the conditions applied, free Zn(2+) may be the most relevant Zn species for Zn uptake; furthermore, relative growth rate may be regarded as a relatively sensitive signal for Zn stress circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号