首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
At the compacted, north-south line of the ice edge, phytoplankton were sampled during early austral autumn of 1986 in the northwestern Weddell Sea. Cells from discrete water bottle samples from 12 stations on two east-west transects were counted to gain quantitative information on the composition, abundance, distribution, and condition of the phytoplankton in water-column assemblages. Over 70 species were found. The highest numbers of total cells (integrated through the top 150 m) were found in open water, well-separated from and to the east of the ice edge on the southern transect, with 6.01×1010 cells m-2. The relative abundance of diatoms was low at ice-convered stations (< 35% of the total phytoplankton in preserved samples) and high at open-water stations (> 80%); however, the relative abundance of the prymnesiophyte Phaeocystis sp. was high at ice-covered stations (> 60%) and low at open-water stations (< 16%), with lower absolute abundances than during a previous austral-spring phytoplankton increase. In the open ocean, the dominants were the pennate diatoms Fragilariopsis cylindrus, Pseudonitzschia prolongatoides, F. curta, and a small form of the centric diatom Chaetoceros dichaeta in chains. Although the three pennate diatoms were frequently dominant in number, they represented less biomass than C. dichaeta in open waters. Mean phytoplankton abundance was low (0.2×106 cells l-1) but, overall, the diatom cell density (0.14×106 cells l-1) was similar to that found previously during a northward transect from ice-covered to ice-free water at the Weddell-Scotia Sea ice edge (spring 1983). The phytoplankton spatial patterns in the two autumn transects differed, with the more southerly transect exhibiting a higher abundance of diatoms and dinoflagellates. The ratio of full to empty diatoms was higher on the southern transect, indicating a healthy population, while lower ratios of full/empty frustules on the northern transect suggested a generally declining population. However, Phaeocystis sp. was more abundant on the northern transect.  相似文献   

2.
In order to understand the relationships between the dynamics of phytoplankton populations in the surface microlayer (MIL) and in the water column below (SSW), this study used high-performance liquid chromatography-derived pigment markers in samples from a coastal lagoon of Baja California (Estero de Punta Banda, EPB) under summer (October 2003) and winter (December 2003) conditions. Photosynthetic pigment signatures of phytoplankton at the air–sea interface (phytoneuston) and subsurface measurements were related to bottom-up (temperature, salinity, nutrient concentrations) and top-down factors (zooplankton abundance). Slicks and scum layers were observed in the inner part of the lagoon and coincided with greater stratification of layers just below the sea surface and lower wind intensities. In general, spatial variability in pigment markers and ancillary data was very high and resulted in non-significant differences between MIL and subsurface samples when different regions of EPB or sampling dates were compared. However, different patterns were found between pigments and environmental factors of MIL and SSW samples when the relative numbers of stations with positive and negative differences (ΔX = X MILX SSW) were computed. For each survey, pigment markers of phytoneuston and phytoplankton samples were not necessarily correlated. Further analysis revealed that those markers (19′-butanoyloxyfucoxanthin, prasinoxanthin, divinil-chlorophyll a) corresponded to picophytoplankton groups (haptophyte, prasinophyte, and prochlorophyte). On both dates, the MIL was enriched in 19′-hexanoyloxyfucoxanthin (a marker for a type 4 haptophyte) and fucoxanthin (marker for bacillariophytes, haptophytes, and crysophytes) and depleted in peridinin (marker for dinophytes). Different zooplankton grazers accumulated in the MIL (loricate tintinnids) and in SSW (copepod nauplii).  相似文献   

3.
Distribution of chlorophyll pigments, carotenoids and abundance of phytoplankton in relation to certain environmental factors of the nearshore waters off the central west coast of India (latitudes 15°30 to 18°30N) were studied monthly at 7 stations during 1970/1971. Changes in the hydrographical factors and the biological processes occurring in the region during different months appear to be influenced by the pattern of upwelling along the northern and southern parts of the west coast of India. The pigment concentration shows a marked decrease in October, but is followed by a slow but steady rise, which reaches its maximum in April/May. A slightly smaller maximum is noticed in December/January. The composition of various chlorophyll pigments and carotenoids indicated the physiological state of phytoplankton populations during different months in the region investigated. Abundance of specific phytoplanktonic elements, consisting mainly of diatoms, in space and time, characterises the waters of the central west coast of India, indicating a clear succession of species.  相似文献   

4.
Microzooplankton grazing and selectivity of phytoplankton in coastal waters   总被引:16,自引:0,他引:16  
Microzooplankton grazing activity in the Celtic Sea and Carmarthen Bay in summer 1983 and autumn 1984 was investigated by applying a dilution technique to high-performance liquid chromatographic (HPLC) analysis of photosynthetic pigments in phytoplankton present within natural microplankton communities. Specific grazing rates on phytoplankton, as measured by the utilisation of chlorophyll a, were high and varied seasonally. In surface waters during the autumn, grazing varied between 0.4 d-1 in the bay and 1.0 d-1 in the Celtic Sea, indicating that 30 and 65% of the algal standing stocks, respectively, were grazed daily. Grazing rates by microzooplankton within the thermocline in summer suggest that 13 to 42% of the crop was grazed each day. Microzooplankton showed selection for algae containing chlorophyll b, in spite of a predominance of chlorophyll c within the phytoplankton community. Changes in taxon-specific carotenoids indicated strong selection for peridinin, lutein and alloxanthin and selection against fucoxanthin and diadinoxanthin. This indicates a trophic preference by microzooplankton for dinoflagellates, cryptophytes, chlorophytes and prasinophytes and selection against diatoms, even when the latter group forms the largest crop within the phytoplankton. Interestingly, those algal taxa preferentially grazed also showed the highest specific growth-rates, suggesting a dynamic feed-back between microzooplankton and phytoplankton. Conversion of grazing rates on each pigment into chlorophyll a equivalents suggests firstly, that in only one experiment could all the grazed chlorophyll a be accounted for by the attrition of other chlorophylls and carotenoids, and secondly that in spite of negative selection, a greater mass of diatoms could be grazed by microzooplankton than any other algal taxon. The former may be due either to a fundamental difference in the break-down rates of chlorophyll a compared to other pigments, or to cyanobacteria forming a significant food source for microzooplankton. In either case, chlorophyll a is considered to be a good measure of grazing activity by microzooplankton.  相似文献   

5.
The surface sediment characteristics related to benthic microalgae primary production were studied at the Dogger Bank, North Sea, in order to evaluate the potential role of microphytobenthos as a food source for the macrobenthic fauna. Twenty-one stations were sampled in July 2001 and May 2002, with water depth ranging from 16.3 to 68.5 m. High-performance liquid chromatography pigment analyses revealed that concentrations of chlorophyll a, chlorophyll c and fucoxanthin are mainly associated with benthic diatom flora at most parts of the Dogger Bank. High percentage of phytopigments (>50%) was firmly attached to sand grains at the stations shallower than 40 m water depth. The deeper stations were characterized by a phytopigment composition originating from pelagic phytoplankton settled on the sea floor. Qualitative microscopy showed that the benthic microflora on top of the Bank mainly consists of small diatoms (5–10 μm), such as e.g., Diploneis spp., living attached to the sand grains. The results are discussed concerning possible implications for ecology and biogeochemistry of the Dogger Bank area.  相似文献   

6.
The surface abundance and species composition of phytoplankton communities were studied in a section across the continental shelf between the Río de La Plata and the oceanic waters of the Subtropical Convergence, during late spring (November 1999). Algal communities were examined using light microscopy and HPLC-derived (high-performance liquid chromatography) pigment concentrations. The CHEMTAX program was used to estimate the chlorophyll a (chl a) biomass of different algal classes. The inclusion of the most abundant members of the chl c pigment family (chl c1, chl c2, chl c3 and chl c2 monogalactosyldiacylglyceride esters) in the pigment matrix improved the CHEMTAX interpretation of field data. Using this novel approach four haptophyte populations were distinguished across the studied section, even though they had qualitatively similar pigment signatures, although one subtype lacked 19-hexanoyloxyfucoxanthin (Hex-Fuco). Five different phytoplankton assemblages, spatially segregated by the prevailing environmental conditions, were distinguished during the studied period. All of them showed a complex community structure, formed by a background of small-sized cells such as cyanobacteria, cryptophytes, haptophytes and prasinophyceans, on which diatom, cryptophyte or some haptophyte blooms were overlapped. In the estuarine assemblage, where maximum chl a concentrations where found, diatoms were always the dominant group (30–60% of total chl a), but cryptophytes (10–40%), prasinophyceans (2–20%) and dinoflagellates (2–12%) were also relevant. In the coastal assemblage diatoms were also the dominant group (35–45%), but haptophytes lacking Hex-Fuco were subdominant (20–35%). The continental shelf assemblage showed an almost exclusive dominance (90%) of haptophytes resembling the coccolithophorid E. huxleyi. Another haptophyte (Phaeocystis sp.) was dominant (75–85%) in the Malvinas Current assemblage. The Brazil Current assemblage was characterized by the codominance of cyanobacteria (45%) and haptophytes (35%). These results are discussed in relationship to the complex hydrographic features of the area.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

7.
Chlorophyll a concentration was compared with carotenoid concentration as a predictor of seasonal changes in phytoplankton biomass within Bedford Basin, Nova Scotia, Canada (1976–1977). For all seasons, predictions of biomass from different measures of chlorophyll a were poor and were not improved when chlorophyll a was measured accurately by chromatography. Chlorophyll a and a carotenoid (fucoxanthin) were highly correlated and equally good predictors of total biomass, but neither was related to changes in peridinin concentration. Correlations between specific carotenoids and diatom or dinoflagellate biomass indicate that carotenoids may be useful to describe changes in biomass composition. For all pigments measured, predictions of biomass were hampered when large dinoflagellate cells were present, which biased estimates of total cell volume. Regardless of species composition or cell density, dinoflagellate biomass contributed on the average 68% of the total cell volume measured each day compared with only 14% for diatoms and 17% for flagellates, the most abundant taxa.  相似文献   

8.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

9.
An anticyclonic slope water oceanic eddy (SWODDY), named AE6, was sampled in the southern Bay of Biscay from 12 to 31 August 1998 to assess changes in the abundance and composition of phytoplankton assemblages related to the mesoscale feature. SWODDY AE6 showed characteristic biological signatures. A twofold increase in chlorophyll a concentration was found at the eddy centre relative to surrounding waters. Picoplankton cells accounted for a lower fraction of total chlorophyll a values at the eddy centre (44–50%) than outside the eddy (54–61%). Microscopic cell counts and HPLC pigment analysis showed that diatoms were almost entirely confined to the eddy centre, but both techniques yielded different results when studying other phytoplankton groups. Microscopic cell counts indicated that the spatial distribution of diatoms, dinoflagellates and unidentified flagellates was significantly influenced by SWODDY AE6, showing maximum abundance inside the mesoscale feature. HPLC pigment analysis provided more detailed information about the composition of pico–nanoplanktonic organisms. Pigment data processed by means of the CHEMTAX program showed "chlorophytes", "haptophytes" and "dinoflagellates II" (having haptophyte-like pigments and gyroxanthin-diester) as the more abundant "pigment classes" at the eddy centre, whereas dominance of "chlorophytes" and higher contribution of "cyanobacteria" (type Synechococcus) were estimated in the surrounding waters.Communicated by S.A. Poulet, Roscoff  相似文献   

10.
Data from the Continuous Plankton Recorder survey of the North Atlantic Ocean and the North Sea are used to study geographical variations in the amplitude, duration and timing of the seasonal cycles of total phytoplankton and total copepods. It is shown that the distribution of overwintering stocks influences the distributions throughout the year. There is a relationship between the timing of the spring increase of phytoplankton and the amplitude of the seasonal variation in sea surface temperature. In the open ocean, the timing of the spring increase of phytoplankton corresponds with the spring warming of the surface waters. In the North Sea the spring increase occurs earlier, associated, perhaps, with transient periods of vertical stability, resulting in a relatively slower rate of increase. It is suggested that in the open ocean the higher rate of increase is under-exploited by copepods due to low overwintering stocks and longer generation times. Exceptionally early spring increases of phytoplankton off the west coast of Greenland and over the Norwegian shelf are probably associated with permanent haloclines. A high and late autumn peak of phytoplankton off the coast of Portugal may be associated with coastal upwelling.  相似文献   

11.
M. Fiala  L. Oriol 《Marine Biology》1984,79(3):325-332
In late summer (Antiprod I cruise, March 1977), antarctic waters of the southern part of the Indian Ocean contain low amounts of dissolved Vitamin B12: 1 ng l-1 on average. However, higher concentrations were recorded in two areas: in the subantarctic convergence zone and between 50° and 57°S, with values greater than 3,5 ng l-1. Despite nutrient-rich waters, primary production was low and the phytoplankton sparse. Abundance of diatoms was related, to a certain extent, to the concentration of Vitamin B12. An experimental approach (Antiprod II cruise, February and March 1980) was applied to (1) artificially enriched natural sea water, and (2) cultures of two diatom species isolated from antarctic waters, Nitzschia turgiduloides and Chaetoceros sp. The experiments demonstrated that antarctic diatoms in general do not require any of the three investigated vitamins for growth. However, Vitamin B12 has a slightly stimulating effect on growth. This may explain the observed relation between phytoplankton density and vitamin concentration in the Antarctic Ocean. This experimental approach elucidates the minor role of vitamins in the primary production of antarctic waters and provides indirect evidence of the major importance of turbulence as a limiting factor.  相似文献   

12.
Phytoplankton species diversity was generally high throughout the year at two stations in the central Red Sea (Lat. 21°30N), and species of Mediterranean and Indian Ocean origin were represented, reflecting seasonal monsoonal influence. Low phytoplankton cell numbers accompanying high production rates suggest the significance of nanoplankton or picoplankton which were not enumerated. Production was high year-round, and averaged 390 gC m-2 yr-1, despite the virtual lack of nutrient additions from rainfall or land runoff or demonstrable upwelling. Highest nutrient levels followed the first seasonal peak of production. Biomass and production were seasonally bi- or tri-modal, with major peaks in December–February and June–August, 1977–1978. The first peak of production, populated by diatoms, occurred at the onset of seasonal stratification, but the second peak, populated by Trichodesmium spp., occurred at the height of seasonal stratification and lowest nutrient concentrations. There is no clear relationship between the timing of monsoon activity and the annual production cycle.  相似文献   

13.
Phytoplankton pigments at a coastal station off Sydney, Australia, were studied by cellulose thinlayer chromatography. The chromatographic procedure distinguished chlorophylls a, b and c, chlorophyllide a, pheophytin a and pheophorbide a, and the major carotenoids carotene, astaxanthin, fucoxanthin, peridinin, diadinoxanthin and neoxanthin. Chlorophyllide a and pheophorbide a were the most significant chlorophyll-a degradation products in the water column, chlorophyllide a coming from chlorophyllase activity of senescent diatoms, and pheophorbide a from faecal pellets of copepods. Chlorophyll c occurred in every sample, even where there was no trace of chlorophyll a. Because of the greater chemical and biological stability of chlorophyll c compared to chlorophyll a, high chlorophyll c:a ratios result from a large proportion of senescent or detrital material in the samples. Determining the position of patches of copepods, diatoms, green algae and dinoflagellates in the water column was easily done by noting the presence of definitive pigments on the chromatograms.  相似文献   

14.
M. M. Gowing 《Marine Biology》1989,103(1):107-118
Phaeodarian radiolarians were sampled from the upper 200 m along a transect through the ice-edge zone in the Weddell Sea in the austral autumn (March 1986) and at several stations in the western Antarctic Peninsula region in the austral winter (June 1987). Abundances of phaeodarians reached 3 132 m-3 and were similar to or higher than maximum abundances of polycystine radiolarians, foraminiferans, and acantharians, and similar to or less than those of the heliozoan Sticholonche sp. Phaeodarians varied in abundance and species composition both seasonally and/or geographically. In contrast to the more numerous ciliates and flagellates that were most abundant in the upper 100 m, phaeodarians were most abundant from 100 to 200 m and showed no distinct pattern related to the ice edge. Electron microscopical examination of food vacuoles showed that phaeodarians are omnivorous generalists, feeding on a variety of food ranging in size from bacteria to large protozoans in both regions and seasons. Algal cells consumed in addition to diatoms and dinoflagellates included Chlorella-like cells and members of the recently described chrysophyte order Parmales. Scales of prasinophytes were common. Phaeodarians are consumed by the non-selective particlefeeding salp Salpa thompsoni. Thus, phaeodarians link microbial food webs to macrozooplankton and increase the complexity of the Antarctic food web.  相似文献   

15.
Depth profiles of particulate protein-nitrogen at 4 oceanic and 2 upwelling stations in the North Atlantic Ocean were measured by a new fluorometric method. The protein-nitrogen in the upper 20 m ranged from 0.19 to 1.61 μg-at N/1 at the oceanic stations and from 0.43 to 3.54 μg-at/1 at the upwelling stations. The mean values in the euphotic zone were 0.54 μg-at N/1 for the oceanic stations and 1.70 μg-at N/1 for the upwelling stations. The ratio of protein-nitrogen to chlorophyll at the two sets of stations was 2.83 and 0.54 μg-at N/μg chlorophyll, respectively. Regression analysis of the pooled data yielded a detritus and zooplankton-free ratio of 0.38 μg-at N:μg chlorophyll. Calculations of the phytoplankton protein-nitrogen, based on this ratio, suggest that in the oceanic water only 20% of the sestonic protein-nitrogen is associated with the phytoplankton. In the upwelling waters, the phytoplankton may account for 65% of the sestonic proteinnitrogen.  相似文献   

16.
In order to estimate the in situ grazing rates of Salpa thompsoni and their implications for the development of phytoplankton blooms and for the sequestration of biogenic carbon in the high Antarctic, a repeat-grid survey and drogue study were carried out in the Lazarev Sea during austral summer of 1994/1995 (December/January). Exceptionally high grazing rates were measured for S. thompsoni at the onset of a phytoplankton bloom (0.2 to 0.8 μg chlorophyll a l−1) in December 1994, with up to ≃160 μg of plant pigments consumed by an individual salp of 7 to 10 cm length per day. Dense salp swarms extended throughout the marginal ice zone, consuming up to 108% of daily phytoplankton production and 21% of the total chlorophyll a stock. Due to the much faster sinking rates and higher carbon content of salp faecal pellets, the efficiency of downward carbon flux through salps is much higher than through the other major grazers, krill and copepods. S. thompsoni can thus export large amounts of biogenic carbon from the euphotic zone to the deep ocean. With the observed ingestion rates during December 1994, this flux could have attained levels of up to 88 mg C m−2 d−1, accounting for the bulk of the vertical transport of carbon in the Lazarev Sea. However, in January 1995, when phytoplankton concentrations exceeded a threshold level of 1.0 to 1.5 μg chlorophyll a l−1, salps experienced a drastic reduction in their feeding efficiency, possibly as a result of clogging of their filtering apparatus. This triggered a dramatic reversal in the relationship, during which a dense phytoplankton bloom developed in conjunction with the collapse of the salp population. Increases in the biomass and geographic range of the tunicate S. thompsoni have occurred in several areas of the southern ocean, often in parallel with a rise in sea-surface temperature during sub-decadal periods of warming anomalies. Received: 10 August 1997 / Accepted: 21 October 1997  相似文献   

17.
Chaetoceros dichaeta Ehrenberg is one of the most important planktonic diatom species in the Southern Ocean, making a significant contribution to the total biomass in the region. Our observations on both field and culture material have revealed the existence of a specialized form of C. dichaeta adapted to living in sea ice. This sea ice form differs from the planktonic form by the shape and orientation of the setae and the aperture length between sibling cells. Thus, the diameter of the chain is equivalent to the apical axes of the cells and is accompanied by a two order of magnitude decrease in minimal space requirement. Here, we report for the first time on the extraordinary overwintering strategy of a planktonic diatom in sea ice facilitated by its rapid morphological adaptation to changing environmental conditions. This morphological plasticity enables it to thrive in the confined space of the sea ice brine matrix and retain its numerical dominance in recurrent growing seasons and has likely evolved to optimally exploit the dynamic ecosystem of the seasonally ice-covered seas of the Southern Ocean.  相似文献   

18.
P. C. Reid 《Marine Biology》1977,40(4):337-339
In most areas of the north-eastern Atlantic Ocean, diatoms have declined drastically in abundance in the last decade. Additionally, in areas to the north of 59°N Ceratium species and an index of total phytoplankton have also declined. South of 59°N the phytoplankton index has increased, diatoms have declined and Ceratium species have remained at a constant level of abundance. A possible explanation of the increase in the phytoplankton index at a time when the diatoms were declinig south of 59°N is the development of unidentified phytoplankton organisms such as microflagellates. As many of the variables influencing phytoplankton standing crop are governed in turn by the prevailing weather, the phytoplankton changes may well be a consequence of the general deterioration, since 1940, of North Atlantic weather. Changes in phytoplankton which may be attributed to an amelioration of climate since 1971 are evident as yet only in the southern North Sea.  相似文献   

19.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

20.
Salps (mainly Salpa fusiformis and, to a lesser extent, Pegea socia) and a web-building pteropod (Corolla spectabilis) were studied in epipelagic waters of the central California Current. Although both kinds of gelatinous zooplankton trap phytoplankton in a mucus net, a fecal pellet analysis indicated that their diet differs significantly when they feed together, probably because of differences both in the pore sizes of their nets and in their feeding methods. Salps have a finemesh filter, on which they can retain even the smallest phytoplankton; thus, when small coccolithophores are abundant, as they were in our study, salp feces contain such cells and the coccoliths derived from them. In contrast, pteropods feeding in the same area produce fecal pellets consisting chiefly of larger phytoplankton, especially diatoms. Since fecal pellets transport most biogenic material to the deep sea, changes in herbivore species composition at a given geographic location can change the chemistry of materials entering deep water; at our study site, the more salps, the greater the calcite flux, and, the more pteropods, the greater the silica flux. In addition, fecal pellets of both salps and pteropods include partially digested residues of phytoplankton that appear as olive-green spheres, having an ultrastructure identical with that of the socalled olive-green cells. Presumably, fecal pellets, after sinking into deep water, ultimately disintegrate. releasing both the viable phytoplankton and the olive-green spheres into aphotic waters. Thus the feces of epipelagic herbivores are likely sources of much of the flora of the deep ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号