首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
An integrated approach was applied to identify the key odorants comprising emissions from different zones in two adjacent waste treatment facilities (an aerobic biological treatment plant and an anaerobic landfill site), identify their precise sources, and distinguish the interactive influences between them. Seven odor families were investigated, including alcohols, terpenes, carbonyls, aromatics, volatile fatty acids (VFAs), sulfur compounds, and ammonia. Principal components analysis, characteristic molecular ratios, and ternary diagrams were used to differentiate the interactive influence of the odor sources. Among typical biotic compounds, terpenes were found to be more suitable as odor markers for their better fingerprinting character than sulfur compounds and VFAs. Ratios of p-cymene at sampling locations related to the biological treatment plant (aerobic status) were between 0.00 and 0.25, whereas those at landfill-related sampling points (anaerobic status) were between 0.25 and 1.0. The molecular ratio of terpenes was also found to be an appropriate means to differentiate between homologous and similar odor sources such as an aerobic biological treatment plant and anaerobic landfill.

Implications:?The aim of this work is to identify the key odorants comprising emissions from different zones in two adjacent waste treatment facilities, identify their precise sources, and distinguish the interactive influences between them. The emission of gaseous pollutants greatly affects the living quality of nearby residents, and odor complaints are becoming a major problem. In this study we utilized various pretreatment and analytical methods to obtain integrated emission information of gaseous pollutants. The results showed terpenes were found to be more suitable as odor markers for their better fingerprinting character than sulfur compounds and VFAs.  相似文献   

2.
Preparation of mercury emissions inventory for eastern North America   总被引:1,自引:0,他引:1  
Point and area inventories of anthropogenic mercury emissions documented by US and Canadian environmental agencies have been aggregated into a single archive for analysis and air pollution modeling work. For 5341 point sources and 1634 aggregated area sources, mercury emissions are apportioned among elemental gaseous [Hg(0)], reactive gaseous[Hg(II)], and particulate [Hg(p)] emissions using speciation factors derived from available monitoring measurements. According to this inventory, 4.82 x 10(5) mol of mercury were emitted in calendar year 1996 in the latitude range 24-51 degrees north, and longitude range 64-91 degrees west, which covers most of North America east of the Mississippi River. Using speciation factors consistent with past emission source studies, we find the relative emission proportions among Hg(0):Hg(II):Hg(p) species are 47:35:18. Maps of the various mercury species' emissions patterns are presented. Gridded emission patterns show local mercury emission extremes associated with individual cement production and municipal incineration facilities, and in contrast to past inventories, population centers do not stand out. Considerable uncertainties are still present in estimating emissions from large point sources, as are methods of apportioning emissions among various mercury species.  相似文献   

3.
Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

4.
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

5.
The impact of gaseous exhaust emissions is determined for the following categories of mobile sources which are currently not covered by national emission regulations: 1) farm equipment, 2) merchant vessels, 3) locomotives, 4) lawn and garden implements, 5) snowmobiles, 6) outboard motors, 7) transport refrigeration units, and 8) helicopters. Mass emission rates of each category are tabulated and compared to other emissions from both mobile and stationary sources in selected Air Quality Control Regions. Also, projections are made as to the expected increase of emissions from each source category through 1990. The results show that in the near future some categories of mobile sources will be contributing substantial amounts of pollutants, on a mass basis, in regions with critical air pollution problems. As stricter emission standards on regulated sources continue to be implemented, the relative significance of these unregulated sources will increase. The major conclusion is that broad generalizations as to the amounts of air pollution contributed by these unregulated mobile sources nationwide may be grossly misleading. The only effective way to assess their impact is on a region-by-region basis. To this end, generalized computer programs are developed which permit the estimation of each category’s present and future mass emission rates in any Air Quality Control Region in the country  相似文献   

6.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


7.
Abstract

The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

8.
Abstract

Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

9.
Two competing meteorological factors influence atmospheric concentrations of pollutants from open liquid area sources such as wastewater treatment plant units: temperature and stability. High temperatures in summer produce greater emissions from liquid area sources because of increased compound volatility; however, these emissions tend to disperse more readily because of frequent occurrence of unstable conditions. An opposite scenario occurs in winter, with lesser emissions due to lower temperatures, but also frequently less dispersion, due to stable atmospheric conditions. The primary objective of this modeling study was thus to determine whether higher atmospheric concentrations from open liquid area sources occur more frequently in summer, when emissions are greater but so is dispersion, or in winter, when emissions are lesser but so is dispersion. The study utilized a rectangular clarifier emitting hydrogen sulfide as a sample open liquid area source. Dispersion modeling runs were conducted using ISCST3 and AERMOD, encompassing 5 yr of hourly meteorological data divided by season. Emission rates were varied hourly on the basis of a curve-fit developed from previously collected field data. Model output for each season was used to determine (1) maximum 2-min average concentrations, (2) the number of odor events (2-min average concentrations greater than odor detection thresholds), and (3) areas of impact. On the basis of these 3 types of output, it was found that the worst-case odors were associated with summer, considering impacts of meteorology upon both emissions and dispersion. Not accounting for the impact of meteorology on emissions (using a constant worst-case emission rate) caused concentrations to be overpredicted compared with a variable emission rate case. The highest concentrations occurred during stability classes D, E, and F, as anticipated. A comparison of ISCST3 and AERMOD found that for the area source modeled, ISCST3 predicted higher concentrations and more odor events for all seasons.  相似文献   

10.
Quantifying the contribution of emission sources responsible for mercury deposition in specific receptor regions helps develop emission control strategies that alleviate the impact on ecosystem and human health. In light of the maximum available control technology (MACT) rules proposed by U.S. Environmental Protection Agency (EPA) and the ongoing intergovernmental negotiation coordinated by United Nations Environmental Programme (UNEP) for mercury, the Community Multiscale Air Quality Modeling System (CMAQ-Hg) was applied to estimate the source contribution in six subregions of the contiguous United States (CONUS). The considered source categories include electric generating units (EGU), iron and steel industry (IRST), other industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC). It is found that, on an annual basis, dry deposition accounts for two-thirds of total annual deposition in CONUS (474 Mg yr(-1)), mainly contributed by reactive gaseous mercury (about 60% of total deposition). The contribution from large point sources can be as high as 75% near the emission sources (< 100 km), indicating that emission reduction may result in direct deposition decrease near the source locations. Out-of-boundary transport contributes from 68% (Northeast) to 91% (West Central) of total deposition. Excluding the contribution from out-of boundary transport, EGU contributes to about 50% of deposition in the Northeast, Southeast, and East Central regions, whereas emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). This suggests that the implementation of the new EPA MACT standards will significantly benefit only these three regions. Emission speciation is a key factor for local deposition. The source contribution exhibits strong seasonal variation. Deposition is greater in warm seasons due to stronger Hg0 oxidation. However, the contribution from anthropogenic sources is smaller in warm seasons because of larger emissions from natural processes and stronger vertical mixing that facilitates transport.  相似文献   

11.
Plant species release appreciable quantities of volatile organic substances to the atmosphere. The major compounds emitted are monoterpenes (C10) like α-pinene, β-pinene, and limonene and the hemiterpene (C5) isoprene. The rate of emission of isoprene is light dependent and ranges between 0.04 to 2.4 ppb/cm2/min/l for oak, cottonwood, and eucalyptus foliage. The rate of emission of a- and/3-pinene and limonene is dependent on the rate of transpiration, structural integrity of the oil cells and resin glands, and temperature of the foliage. Rates of emission for conifer foliage range from 0.4 to 3.5 ppb/g/min/l. An inventory of North American forest regions for the frequency of occurrence of these chemicals released by different tree species showed that 15% was the lowest value for a specific forest-type that emitted terpenes to the atmosphere. More commonly 100% of the trees of a given forest-type emitted terpenes to the atmosphere. An average of 70% is typical of the United States forested regions as a whole. The annual contribution of forest hydrocarbon emissions to the air pollution problem on a global basis is reflected in the 175 × 106 tons of reactive hydrocarbons from tree foliage sources compared to the 27 × 106 tons from man’s activities; in other words, there is a 6.2-fold greater emission level from natural sources than from man made sources. The fate of these gaseous olefins in the atmosphere is undetermined.  相似文献   

12.
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top of a battery of coke ovens at a steel mill located in Southern Taiwan and monitored average emissions in a coke processing area for 16.5 hr. Nine COGs were identified, including ammonia, CO, methane, ethane, ethylene, acetylene, propylene, cyclohexane, and O-xylene. Time series plots indicated that the type of pollutants differed over time, suggesting that different emission sources (e.g., coke pushing, quench tower, etc.) were involved at different times over the study period. This observation was confirmed by the low cross-correlation coefficients of the COGs. It was also found that, with the help of meteorological analysis, the data collected by the OP-FTIR system could be analyzed effectively to characterize differences in the location of sources. Although the traditional single-point samplings of emissions involves sampling various sources in a coke processing area at several different times and is a credible profiling of emissions, our findings strongly suggest that they are not nearly as efficient or as cost-effective as the continuous line average method used in this study. This method would make it easier and cheaper for engineers and health risk assessors to identify and to control fugitive volatile organic compound emissions and to improve environmental health.  相似文献   

13.
Chemical composition of major VOC emission sources in the Seoul atmosphere   总被引:6,自引:0,他引:6  
Na K  Kim YP  Moon I  Moon KC 《Chemosphere》2004,55(4):585-594
This paper describes a chemical analysis of volatile organic compounds (VOCs) for five emission sources in Seoul. The source categories included motor vehicle exhaust, gasoline evaporation, paint solvents, natural gas and liquefied petroleum gas (LPG). These sources were selected because they have been known to emit significant quantities of VOCs in the Seoul area (more than 5% of the total emission inventory). Chemical compositions of the five emission sources are presented for a group of 45 C2-C9 VOCs. Motor vehicle exhaust profiles were developed by conducting an urban tunnel study. These emissions profiles were distinguished from the other emission profiles by a high weight percentage of butanes over seasons and propane in the wintertime. It was found that this is due to the wide use of butane-fueled vehicles. To obtain gasoline vapor profiles, gasoline samples from five major brands for each season were selected. The brands were blended on the basis of the marketshare of these brands in Seoul area. Raoult's law was used to calculate gasoline evaporative compositions based on the liquid gasoline compositions. The measured and estimated gasoline vapor compositions were found to be in good agreement. Vehicle and gasoline evaporation profiles were made over seasons because of the seasonal change in their compositions. Paint solvent emissions profiles were produced based on a product-use survey and sales figures. These profiles are a composite of four major oil-based paints and thinning solvent. The source profile of natural gas was made on a methane-free basis. It was found that Ethane and propane were the most abundant compounds accounting for 95% of the natural gas composition. LPG was largely composed of propane and ethane and the remaining components were minor contributors.  相似文献   

14.
Pollutant emissions in the Texas-Mexico border were investigated using an emission database that covers 25 Texas counties and the states of Coahuila, Chihuahua, Nuevo Leon and Tamaulipas in Mexico. Major emissions are from energy generation, mainly from two coal-fired facilities in Coahuila, which also generate most of carbon dioxide. Texas exhibits a larger concentration of sources; around Laredo and the Lower Rio Grande Valley and a sugarcane mill is a significant contributor to particles emissions. In Mexico the minerals and metals industries are the second major contributors to emissions, especially particles. Fossil fuel production is the main source of VOCs.  相似文献   

15.
Abstract

Manure storage tanks and animals in barns are important agricultural sources of methane. To examine the possibility of using an inverse dispersion technique based on a backward Lagrangian Stochastic (bLS) model to quantify methane (CH4) emissions from multiple on-farm sources, a series of tests were carried out with four possible source configurations and three controlled area sources. The simulated configurations were: (C1) three spatially separate ground-level sources, (C2) three spatially separate sources with wind-flow disturbance, (C3) three adjacent ground-level sources to simulate a group of adjacent sources with different emission rates, and (C4) a configuration with a ground level and two elevated sources. For multiple ground-level sources without flow obstructions (C1 and C3), we can use the condition number (k, the ratio of the uncertainty in the calculated emission rate to the uncertainty in the predicted ratio of concentration to emission rate) to evaluate the applicability of this inverse dispersion technique and a preliminary threshold of k < 10 is recommended. For multiple sources with wind disturbance (C2) or an even more complex configuration including ground level and elevated sources (C4), a low k is not sufficient to provide reasonable discrete and total emission rates. The effect of flow obstructions can be neglected as long as the distance between the source and the measurement location is greater than approximately 10 times the height of the flow obstructions. This study shows that the bLS model has the potential to provide accurate discrete emission rates from multiple on-farm emissions of gases provided that certain conditions are met.  相似文献   

16.
Catalytic oxidation is an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emission stream are oxidized with the help of a catalyst Design of catalytic systems for control of point source emissions is based on stream-specific characteristics and desired control efficiency. This paper discusses the key emission stream characteristics and VOC characteristics that affect the applicability of catalytic oxidation. The application of catalytic oxidation technology to four types of air emission sources is discussed: (1) groundwater stripping operations; (2) graphic arts facilities; (3) flexographic printing plants; and (4) latex monomer production. The characteristics of each of these emissions are discussed along with the catalytic technology used to control these emissions.  相似文献   

17.
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

18.
A new bromine, microcoulometric titration cell has been used with a commercially-available microcoulometer for the detection and analysis of sulfur-containing gases in various kraft mill emissions. Separation of the constituents of the gaseous mixtures emitted from mill sources including the recovery furnace, digestors, evaporators, lime kiln, and dissolvers was accomplished on an 8-ft, 3/16 in. stainless steel column packed with 10% Triton X-305 on 60–80 mesh Chromosorb G, DMCS-treated. The column was isothermally operated at 30°C for 4–6 mins and then rapidly raised to 70°C The exact program was varied with the type of sample analyzed. Each source gas was initially screened by direct injection of 0.01–0.1 ml of gas to determine whether or not disproportionately large concentrations of one or more components were present. Appropriate sample volumes were then selected to provide “on-scale” recorder peaks for the major constituents. Elution times for the major constituents were observed so that these compounds could be vented at the proper time following injection of large sample volumes (up to 10 ml) for detection and analysis of minor constituents. Venting of the high concentration compounds was necessary when analyzing large volume samples to maintain near equilibrium titration conditions in the microtitration cell.  相似文献   

19.
The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry's law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field sampling had been conducted on relatively cool days (85-90 degrees F), the constant emission rate underestimated odor impact significantly (by 73%).  相似文献   

20.
Estimates of the emissions of ammonia have previously concentrated on animal husbandry sources from agricultural systems. Animal husbandry sources still constitute the major fraction of emissions of ammonia, but we have also considered the potential magnitude of other 'minor' sources, which may include coal combustion, waste incineration, road vehicles, sewage treatment plants, fertiliser manufacture and application, vegetation senescence and crop emissions, domestic pets, and human sources. Where possible, a provisional estimate of UK emissions from each of these sources is given. It is concluded that the potential magnitude of emissions from these 'minor' sources may make a significant contribution to the total emissions of ammonia to the atmosphere. On the basis of the available data, and the application of a range of emission factors to the UK situation, an additional annual emission potential lying in the range of approximately 80-140 ktonne year(-1) over and above that from animal husbandry has been calculated. The uncertainties in the emission estimates and instances in which a better resolution of sources is required are discussed. The emission factors used for animals in various inventories are reviewed and applied to the main UK agricultural animal populations. By using this approach, estimates of emissions from these sources range between 113 and 647 ktonne year(-1), which illustrates the uncertainties involved. It is suggested that our knowledge of the sources of ammonia, and their distribution, is far from complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号