首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletonema costatum was grown at different steady-state growth rates in ammonium or silicate-limited chemostats. The culture was perturbed from its steady-state condition by a single addition of the limiting nutrients ammonium or silicate. The transient response was followed by measuring nutrient disappearance of the liliting perturbation experiment indicate that three distinct modes of uptake of the limiting nutrient can be distinguished; surge uptake (V s ), internally controlled uptake (V i ), and externally controlled uptake (V e ). An interpretation of these three modes of uptake is given and their relation to control of uptake of the limiting nutrient is discussed. The uptake rates of the non-limiting nutrients were shown to be depressed during the surge of the uptake of the limiting nutrient. Kinetic uptake parameters, K s and V max, were obtained from data acquired during the externally controlled uptake segment, V e . The same V max value of 0. 12 h-1, was obtained under either silicate or ammonium limitation. Estimates of K s were 0.4 g-at NH4-N l-1 and 0.7 g-at Si l-1. Short-term 15N uptake-rate measurements conducted on nitrogen-limited cultures appear to be a combination of V s or V i , or at lower substrate concentrations V s and V e . It is difficult to separate these different uptake modes in batch or tracer experiments, and ensuing problems in interpretation are discussed.Contribution No. 882 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA. This work represents portion of three dissertations submitted to the Department of Oceanography, University of Washington, Seattle, in partial fulfillment of the requirements for the Ph.D. degree.  相似文献   

2.
The dinoflagellate symbionts (zooxanthellae) present in many reef corals aid in the survival of the symbiotic unit in nitrogen deficient tropical waters by providing additional routes of nitrogen uptake and metabolism. The enzymatic pathway of ammonia assimilation from seawater and the re-assimilation of coral ammonium waste by zooxanthellae was studied by examining the affinity of glutamine synthetase for one of its substrates, ammonia. Glutamine synthetase activity was measured in dinoflagellates of the species Symbiodinium microadriaticum found in symbiotic association with various marine coelenterates. Michaelis-Menten kinetics for the substrate ammonia were determined for freshly isolated dinoflagellates from Condylactis gigantea (apparent NH3 Km=33 M) and for cultured dinoflagellates from Zoanthus sociatus (apparent NH3 Km=60 M). On the basis of the low apparent Kms for NH3, it appears that ammonia assimilation by these symbiotic dinoflagellates occurs via the glutamine synthetase/glutamate synthase pathway. Additionally, the uptake of exogenous ammonium by an intact coelenterate-dinoflagellate symbiosis was strongly inhibited by 0.5 mM methionine sulfoximine, and inhibitor of glutamine synthetase.  相似文献   

3.
Fucus distichus L. was collected near Vancouver, Canada, in late fall and early winter, 1981. The effects of the forms of nitrogen (nitrate, ammonium or urea) and periodic exposure to air on growth, rhizoid development and nitrogen uptake in germlings was investigated. Gamete release, fertilization, germination and germling growth had no requirement for a specific form of nitrogen. Periodic exposure to air increased secondary rhizoid development twofold. Nitrate and ammonium uptake rates of the germlings were higher than for the mature thalli (20 to 40 times for nitrate and 8 times for ammonium), while the halfsaturation constant (K s) values for nitrate were similar (1 to 5 M). The germlings showed saturable uptake kinetics but the mature thalli did not. When germlings were exposed to air it caused a 70% decrease in nitrate uptake, but not change in ammonium uptake. Ammonium uptake in the mature thalli was proportional to the ambient ammonium concentration. Nitrate uptake in the mature thalli appeared to follow saturation kinetics at low nitrate concentrations, but showed a non-saturable component at concentrations greater than 10 M. Presence of ammonium inhibited nitrate uptake by the mature plants but not by the germlings.  相似文献   

4.
In a series of multifactorial laboratory experiments, Gracilaria tikvahiae apical segments were grown in an apparatus in which they were exposed simultaneously to 3 simulated current speeds (7.5, 15, 22.5 cm s-1) and a still control, and either 3 ammonium concentrations (<6, 37–39, and 119–136 M) under ample uniform light (ca 200 E m-2 s-1) or 3 light intensities (ca 35, 90, and 270 E m-2 s-1) with uniform surplus ammonium. Growth rates of apical segments were determined in each experiment as well as nitrogen and carbon composition of tissues and fluxes of NH4, NO3/NO2, and PO4 in media. In a supplementary series of field experiments, apical segments of G. tikvahiae weresimultaneously exposed to 2 different regimes of water motion in adjacent chambers at several sites characterized by widely different ammonium regimes. The application of simulated current significantly enhanced growth rates in all experiments which utilized recently collected plants. Generally, this enhancement was fully realized at 7.5 cm s-1, with growth rates tending to plateau above that speed. Growth enhancement by simulated current was independent of ammonium concentration and was considerably reduced at the lowest light intensity. In experiments conducted with plants that had been maintained for several months in aquaria, simulated current failed to enhance growth rates. This suggested that growth responses were at least partly a function of prior conditioning. Growth rates were a direct function of light intensity and an inverse function of ammonium concentration, indicating ammonium inhibition at the higher applied concentrations. Simulated current slightly enhanced rates of ammonium uptake but this did not consistently result in reduced C:N ratios, suggesting that the growth-stimulating effect of relative water motion was attributable to factors other than N uptake. There was evidence of luxury consumption of ammonium. In field experiments, growth rates were not significantly related to exposure to water motion.  相似文献   

5.
The substrate analogue [14C]-methylammonium was used to study ammonium/methylammonium uptake by Symbiodinium microadriaticum (zooxanthellae). The value of the Michaelis constant (K m) for the uptake system was approximately 35 M with methylammonium as substrate; ammonium was a competitive inhibitor of methylammonium uptake, and the K m for ammonium uptake (determined as the inhibition constant, K i, for methylammonium) was 6.6 M. Methylammonium uptake by zooxanthellae was light-dependent. Methylammonium uptake rates of zooxanthellae which had been freshly isolated from the hermatypic coral Acropora formosa (0.85±0.05x10-10 mol min-1 cell-1) were lower than those of axenic cultures of the zooxanthellae from Montipora verrucosa (Acroporidae) grown under various nitrogen regimes (1.6 to 12x10-10 mol min-1 cell-1). Maximum uptake rates were found for ammonium-starved cultured M. verrucosa zooxanthellae (10.2 to 12x10-10 mol min-1 cell-1); M. verrucosa zooxanthellae growing with ammonium as nitrogen source and zooxanthellae which had been freshly isolated from A. formosa gave similar and considerably lower uptake rates (0.85 to 1.6x10-1 mol min-1 cell-1). These results suggest that either coral tissue contains sufficient ammonium to repress synthesis of the uptake system of the algal symbionts or, alternatively, there are additional barriers to ammonium transport for zooxanthellae in vivo.  相似文献   

6.
The kinetic response of ammonium- or silicate-limited and ammonium- or silicatestarved populations of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida was determined by a single addition of the limiting nutrient to a steady-state culture and subsequent monitoring of the nutrient disappearance of the limiting and non-limiting nutrients at frequent time intervals. The kinetic response of nonlimited (nutrient) populations of these three species was also determined. Three distinct modes of the uptake of the limiting nutrient were observed for ammonium-or silicate-limited populations of these three species, surge uptake (V s ), internally (cellular) controlled uptake (V i ), and externally (ambient limiting nutrient concentration) controlled uptake (V e ). Non-limited populations did not exhibit the three distinct segments of uptake, V s , V i and V e . Estimates of the maximal uptake rate (V max) and the Michaelis constant (K s ) were obtained from nutrient-limited populations during the V e segment of the uptake curve. Pooled values of V e for the three ammonium-limited populations yielded V max and K s estimates of 0.16 h-1 and 0.5 g-at NH4–N l-1. Kinetic data derived from the V e segment of the uptake curve for silicate-limited populations yielded different values of V max and K s for each of the three species. In a number of parameters that were measured, T. gravida was clearly different from C. debilis and S. costatum and its recovery from nutrient starvation was the slowest. Recovery of all species from silicate limitation or starvation was slower than from ammonium limitation or starvation. Ammonium-starved populations maintained a maximal uptake rate at a substrate concentration an order of magnitude lower (0.1 g-at NH4–N l-1) than that observed for NH4-limited populations (1.0 g-at NH4–N l-1). Adaptation to the severity of the nutrient limitation occurred as changes in the magnitude of cellular characteristics, such as short-term uptake potential (V s ) and affinity for the substrate (K s ). The consequence of these results are discussed in terms of another possible mechanism to explain changes in species composition and succession in nutrient-depleted environments.Contribution No. 944 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

7.
Individuals of Mytilus edulis (collected from Sequim Bay, Washington, in April and August, 1980) were exposed to 5 g l-1 mercury as HgCl2 for 28 d. Gill mercury accumulation, mercury incorporation into the soluble fraction and low molecular weight, mercury-binding proteins of gills, and induction of these mercury-binding proteins were determined as a function of time. Short-term mercury uptake rates of excised gills were also determined for mussels sampled at intervals during exposure. Gill mercury accumulation occurred in three phases, represented by net uptake phases initially (up to Day 4) and toward the end of the exposure (Days 15 to 28), and an intermediate stable phase (Days 4 to 15). The stable phase was associated with induction of the predominant mercury-binding proteins and mercury incorporation into the proteins. After Day 15, the mercury-binding proteins were saturated and spillover of mercury into high molecular weight proteins had occurred. This was associated with saturation of the soluble fraction, increases of mercury on particulate fractions, and a loss of the ability of gills to maintain stable mercury concentrations. Mercury uptake rates of gills were not affected by the 28 d exposure of the whole organism.  相似文献   

8.
The red algaGelidium sesquipedale (Clem.) Born. et Thur. has been cultured in chemostats to assess the effects of light quality and photon-fluence rate (PFR) on growth, photosynthesis and biochemical composition. Plants under blue and red light (BL and RL) showed higher growth rates than under white light (WL) of the same PFR (40 mol m–2 s–1). The light-saturated rate of photosynthesis was higher for algae grown under BL and RL than for algae grown under WL. When algae were transferred to WL of moderate PFR (100 mol m–2 s–1), the light-saturated rate of photosynthesis decreased, being higher in previously RL-grown algae than in previously BL- and WL-grown algae. The initial slope of photosynthesis-irradiance (PI) curves () was affected by PFR but not by light quality. Pigment content was little affected by light quality. Light-quality treatments also affected the biochemical composition of the alga; previous exposure to various light treatments activate or repress several metabolical pathways that are fully expressed in the subsequent phase of WL of moderate PFR. Thus, phycobiliproteins and soluble proteins increased for previously BL- and RL-grown algae, whereas insoluble carbohydrate concentration was reduced, indicating a change of the C-partitioning between carbon compounds and organic nitrogen compounds. Inorganic nitrogen metabolism was also affected by light: under WL of moderate PFR, NO3 was totally depleted from sea water, and maximal values of NO3 uptake were recorded. In addition, neither NO2 nor NH4 + was released. However, when algae were transferred to a low PFR, there was a drastic reduction of NO3 uptake under WL, which only partially recovered over time. It was accompanied by the release of NO2 , but not NH4 +, to the culture medium. Under BL and RL, however, there was a transient enhancement of NO3 uptake that was followed by a net release of NO2 and NH4 . Growth rates were not correlated with PFR. This could be due to the the dynamics of internal carbon mobilization and accumulation in the algae. When algae were exposed to a moderate PFR of WL, carbon requirements for growth were satisfied by photosynthesis. Thus, there was a net accumulation of carbon in the tissue. In contrast, when algae were exposed to low PFRs of either WL, BL or RL, observed growth rates could not be maintained by photosynthesis and carbon was mobilized.  相似文献   

9.
In a series of multifactorial laboratory experiments, Ulva lactuca discs were grown in an apparatus in which they were exposed simultaneously to 3 simulated current speeds (7.5, 15, 22.5 cm s-1) and a still control, and either 3 ammonium concentrations (0–10, 35–45 and 115–145 M) under ample uniform light (ca 200 E m-2 s-1) or 3 light intensities (approximately 35, 90 and 270 E m-2 s-1) with uniform surplus, ammonium. Disc growth rates were determined in each experiment as well as tissue nitrogen and carbon composition and fluxes of NH4, NO3/NO2 and PO4 in media. In a supplementary series of field experiments, U. lactuca discs were simultaneously exposed to 2 different water motion regimes in adjacent chambers at several sites characterized by widely different ammonium concentrations. In field experiments, growth rates were calculated and analyzed as a function of water motion at the various sites. The application of simulated current consistently enhanced disc growth rates in the laboratory, except at the lowest light intensity. In most cases this enhancement was fully realized at the lowest applied simulated current (7.5 cm s-1). Simulated current slightly enhanced ammonium uptake rates by U. lactuca discs, relative to rates in still water, except at the highest ammonium concentration. C:N ratios of discs generally declined with increases in simulated current, except at the highest ammonium concentration. This decline was primarily attributable to increases in per cent N and was, again, mainly realized at 7.5 cm s-1. The results suggested that simulated current compensated for N limitation, except when light was sufficiently low to become the overriding limiting factor, but that the enhancement of growth by simulated current could not be explained in terms of N metabolism alone. Field experiments showed that the higher level of water motion consistently enhanced growth at sites with comparatively low ammonium concentrations, but not at sites with moderate or high ammonium concentrations.  相似文献   

10.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

11.
The uptake of nitrate and ammonium was investigated experimentally during early spring 1989 in the Greenland Sea, with particular attention placed on the roles of irradiance, nitrogen concentrations and nitrateammonium interactions. The phytoplankton assemblage was dominated by the colonial prymnesiophyte Phaeocystis pouchetii. Nitrate concentrations ranged from undetectable at the end of the cruise to greater than 10 M, and ammonium levels ranged from less than 0.1 to 1.9M. The uptake of both nitrate and ammonium as a function of irradiance was found to be a saturation response. Photoinhibition occurred and was found to be greater for ammonium uptake. Ammonium uptake also saturated at irradiance levels five times lower than those needed to saturate nitrate uptake. Nitrate and ammonium uptake as a function of nitrogen concentration also was characterized by a saturation response, with the estimated half-saturation constant (K s) value for nitrate uptake being 0.29 M. Elevated ammonium concentrations inhibited nitrate uptake, and the response appeared to be one of exponential decrease with increasing concentrations of ammonium. The most important factor in the Greenland Sea influencing ammonium uptake during the spring was irradiace, while both irradiance and ammonium concentrations played major roles in regulating nitrate uptake and new production.  相似文献   

12.
Nitrogen fixation (acetylene reduction) at rates of up to 1.2 g N2 g dry wt-1 h-1 was measured for the siphonous green seaweed Codium decorticatum. No nitrogenase activity was detected in C. isthmocladum. The nitrogenase activity was light sensitive and was inhibited by the addition of DCMU and triphenyl tetrazolium chloride. Additions of glucose did not stimulate nitrogen fixation. Blue-green algae (Calothrix sp., Anabaena sp., and Phormidium sp.) were implicated as the organisms responsible for the nitrogenase activity. They occurred in a reduced microzone within the C. decorticatum thallus where nitrogen fixation was optimized. Nitrogen fixation did not affect the kinetic constants for ammonium uptake in C. decorticatum (Ks=12.0 M, Vmax=13.4 mol NH3 g dry wt-1 h-1) determined using the perturbation method. Nevertheless, C. decorticatum thalli which fixed nitrogen had internal dissolved nitrogen concentrations which were over 1.4 times higher than in non-fixing thalli. This suggests that if C. decorticatum does derive part of its nitrogen requirement from the blue-green algae which it harbors, the transfer does not involve competition between this process and the uptake of ambient ammonium.  相似文献   

13.
Dissolved inorganic carbon (DIC) is rarely considered limiting for macroalgae, but some research suggests that under conditions of N sufficiency, photosynthetic capacity is enhanced with DIC enrichment. During spring (April–May) and summer (July–August) 1993, we investigated the interactive effects of nitrogen (N) and DIC on photosynthetic capacity, growth, and nutrient uptake rates of the macroalgae, Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan), dominant species in a temperate eutrophic estuary (Cape Cod, Massachusetts, USA). Water-column CO2 concentrations showed significant diurnal fluctuations, ranging from a morning CO2 peak (21 M) to an afternoon low (13 M) during summer, probably associated with metabolic activities in a thick algal mat. Results from instantaneous photosynthesis measurements and microcosm experiments indicate that DIC limits photosynthetic capacity and growth rates of C. vagabunda during summer, perhaps related to tissue N sufficiency and low water-column CO2 concentrations. For example, this species showed enhanced growth (F=8.69, P<0.02) under DIC but not N enrichment. G. tikvahiae showed marginal DIC enhancement of maximum photosynthetic rate, while growth was significantly stimulated by addition of N. Reduced thallus N of this species during the summer further identifies N as the primary factor limiting growth. In addition, G. tikvahiae has the ability to use DIC in its several forms, while C. vagabunda primarily uses dissolved CO2. DIC enrichment resulted in a depression of NH4 + uptake rates for both species, particularly during summer at saturating (60 M) ammonium levels, suggesting competition between NH4 + uptake and DIC acquisition under conditions of N sufficiency. Dominance of C. vagabunda and G. tikvahiae in areas undergoing eutrophication has been attributed to their successful procurement and storage of N as well as to high growth rates. The present study revealed that under conditions of N sufficiency during summer, DIC may control rates of production of these opportunistic macroalgae.  相似文献   

14.
Based on a series of short-term incubations involving the marine diatom Chaetoceros simplex (Bbsm), precultured in NH 4 + -, NO 3 - -and urea-limited continuous cultures at several dilution rates, we found that both the short-term specific rate of 14CO2 uptake and the amount of CO2 fixed after 8- and 16-min incubations were unaffected by enrichment with NH 4 + , urea, or NO 3 - when NH 4 + or urea were the preconditioning forms of N, but were slightly suppressed when the cells were first grown on NO 3 - . Similar enrichments in the dark, however, led to significant CO2 uptake under all conditions of NH 4 + enrichment and to similarly enhanced CO2 uptake, but only at high growth rates, when urea was the source of enrichment nitrogen. Our light results are contrary to some contemporary findings, but there does seem to be agreement that photosynthetic rates of rapidly growing phytoplankton will not be affected by exposure to pulses of nitrogen. Enhanced dark uptake, in contrast, appears to be characteristic of phytoplankton under all degrees of N limitation, and, as such, may be useful as an “all or nothing” index of the nitrogen status of natural waters. There is some indication that the index may be useful in determining both the form of and the degree of N limitation as well.  相似文献   

15.
Ammonium excretion rates of recently collected specimens of gelatinous zooplankton, the scyphomedusan Chrysaora quinquecirrha DeSor and the etenophore Mnemiopsis leidyi A. Agassiz, were correlated with body mass and water temperature in measurements made from April to October 1989 and 1990. Rates ranged between 3.5 and 5.0 g atoms NH 4 + -N (g dry wt)-1h-1 for C. quinquecirrha and 3.0 to 4.9 g atoms NH 4 + -N (g dry wt)-1h-1 for M. leidyi. Excretion rate equations and in situ data on the size distributions and biomasses of gelatinous zooplankters and water temperature were used to estimate the contribution of ammonium by medusae and ctenophores to mesohaline Chesapeake Bay waters on several dates during April to October 1989 and 1990. We then compared the estimated contributions to direct measurements of 15NH 4 + uptake by microplankton. The maximum estimated regeneration by gelatinous zooplankton was 5.8 g atoms NH 4 + -N m-3h-1 at night in August 1990, when medusae biomass was greatest. This represents about 4% of the ammonium required by the microplankton. During the daytime on all dates, less than 1% of the ammonium required by microplanktion was supplied by gelatinous zooplankton. Therefore, gelatinous zooplankton appear to play a minor role in the ammonium cycle of Chesapeake Bay.  相似文献   

16.
Respiration and excretion by the ctenophore Mnepiopsis leidyi   总被引:1,自引:0,他引:1  
Respiration (dissolved oxygen and carbon dioxide) and excretion (dissolved organic carbon, inorganic and organic nitrogen and phosphorus) rates were measured for a variety of sizes of Mnemiopsis leidyi over a temperature range of 10.3° to 24.5°C. Both respiration and excretion rates were a direct linear function of animal weight and very temperature sensitive (Q104). Oxygen uptake ranged from 155 to 489 g at O/(g dry weight) day-1 and carbon dioxide release from 43 to 166 M. Organic carbon made up about 38% of the total carbon released. Inorganic nitrogen excretion, exclusively in the form of ammonium, comprised 54% of the total nitrogen release and ranged from 10 to 36 M NH4/(g dry weight) day-1. Average release of dissolved primary amines (expressed as glycine equivalents) equaled 43% of the organic nitrogen fraction. Inorganic phosphorus release ranged from 2.0 to 4.9 M/(g dry weight) day-1 and made up about 72% of the total phosphorus loss. The turnover of elements in the body was calculated as 5 to 19% per day for carbon and nitrogen, depending on the temperature, and an even higher 20 to 48% per day for phosphorus. These values are comparable to rates observed for small, active zooplankton.  相似文献   

17.
The shortterm (10–22 d) effect of Zn, Hg, Cu, Cd, Pb, and Ni on the length growth of Mytilus edulis is studied. Significant reductions of growth rate was found at 0.3 g Hgl-1, 3 g Cul-1, 10 g Znl-1, and 10 g Cdl-1 added to the local sea water, while concentrations of up to 200 gl-1 of Pb and Ni had no effect on the growth. With exposure to Cu and Zn, there was a linear reduction in growth rate with increasing metal concentration up to about 6 g Cul-1 and 100 g Znl-1. Above these levels, growth stopped with Cu, while with Zn it was stabilized at about 20% of control growth. When Hg and Cd were added, a curvilinear relationship between growth and metal concentration is indicated. With Hg, growth rate is nearly zero above 3–4 g Hgl-1, while the growth rate was 50% of control after 10 d of exposure to 100 g Cdl-1. At 2 g Cdl-1 there was a significant stimulation of length increase. Observed EC50-values for growth were 0.3–0.4 g Hgl-1, 3–4 g Cul-1, 60 g Znl-1, and 100 g Cdl-1.  相似文献   

18.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

19.
W. M. Balch 《Marine Biology》1986,92(2):163-171
Uptake of the ammonium analogue methylamine hydrochloride was used to examine the mechanism of ammonium transport in several species of marine phytoplankton (mainly Skeletonema costatum, but also Thalassiosira weissflogii, Emiliania huxleyi and Gonyaulax polyedra). Ambient pH had no effect on the retention of methylamine between pH 3.6 to 9.2 HgCl2 markedly inhibited methylamine transport. Transport was temperature-dependent and the Michaelis-Menten equation described methylamine transport as a function of concentration in experiments of less then 20 to 30 min duration. Pulse-chase experiments showed that only 5 to 15% of intracellular methylamine was readily exchanged with external methylamine or ammonium, and the remaining 85 to 95% exchanged more slowly. These results suggest that methylamine transport, hence ammonium uptake, probably was an active metabolic process as it occurred against typical values of algal electrochemical gradients. The acid-trap model of ammonium transport was not consistent with these data. A two-compartment model where ammonium is transported into the cytoplasm and vacuole is proposed.  相似文献   

20.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号