首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 345 毫秒
1.
有机碳是陆地水生生态系统碳循环重要组成部分,湿地在维持岩溶碳汇稳定性方面具有十分重要的作用,揭示岩溶湿地水体中的有机碳时空分布特征及来源有助于明晰岩溶流域碳循环过程。本文以贵州威宁草海岩溶湿地为研究对象,对其丰、枯水期湿地水中溶解有机碳(DOC)、颗粒有机碳(POC)含量以及颗粒有机质(POM)碳、氮同位素等指标的测定,分析草海湿地水中POC、DOC浓度时空分布特征,探讨了水体中有机碳的来源。结果表明:草海湿地水体有机碳总体上以DOC为主,丰水期DOC变化范围为4.25~12.58 mg/L,平均值为8.19±1.49 mg/L,枯水期变化范围为4.79~15.93 mg/L,平均值为8.78±3.01 mg/L,丰水期略低于枯水期,DOC来源较为复杂,不同水文期受到外源和内源不同程度的影响;DOC在空间上丰水期呈现西部偏低,东及东南部偏高的分布特征,枯水期呈现南及西南部偏低,北及东北部偏高的分布特征。草海湿地水体丰水期POC变化范围为0.35~3.39 mg/L,平均值为1.13±0.78 mg/L,枯水期变化范围为0.32~1.84 mg/L,平均值为0.79±0.35 mg/L,丰水期高于枯水期;POC在空间上两期都呈现出中西低、中东高的分布特征。丰水期颗粒有机质的δ13C、δ15N值变化范围分别为-30.13‰~-14.80‰和-9.69‰~4.72‰,平均值分别为(-22.54±2.78)‰和(-2.88±2.89)‰,该时期POC以陆源有机质贡献为主;枯水期颗粒有机质的δ13C、δ15N值变化范围分别为-29.13‰~-21.91‰和-0.14‰~9.15‰,平均值分别为(-25.12±2.04)‰和(3.23±1.78)‰,该时期POC主要来源于沉积物。  相似文献   

2.
《环境科学与技术》2021,44(6):35-42
湖泊蓝藻水华期间,水体无机氮缺乏,有机氮的循环转化能为浮游植物提供重要的氮素补充,而藻华频发的中国东部湖泊有机氮浓度的时空特征和影响因素尚不明确。该文基于区域划分系统分析了中国东部84个湖泊有机氮浓度特征和影响因素,并对比分析了区域典型湖泊鄱阳湖、太湖有机氮浓度的长期变化。结果表明,调查湖泊枯水期有机氮浓度为0.08~3.30 mg/L,均值为(0.85±0.46) mg/L,占总氮比例为8.01%~99.45%,均值为(64.67±22.72)%;丰水期有机氮浓度为0.05~1.47 mg/L,均值为(0.68±0.42) mg/L,占总氮比例为9.15%~93.39%,均值为(59.12±20.77)%。有机氮浓度均值呈现枯水期"西高东低"而丰水期"西低东高"的特征,即枯水期长江(宜昌-望江段)流域湖泊长江(望江-入海口段)流域湖泊淮河流域湖泊,而丰水期与之相反。从有机氮占总氮比例的季节特征来看,长江(宜昌-望江段)流域和淮河流域湖泊多数呈现枯水期高于丰水期,而长江(望江-入海口段)流域湖泊多数呈现枯水期低于丰水期。湖泊藻生物量、悬浮物浓度对湖泊有机氮浓度的影响呈现季节和区域性差异,区域典型湖泊鄱阳湖有机氮浓度主要受悬浮物浓度影响,而太湖有机氮浓度主要受藻生物量影响,受悬浮物浓度影响较小。  相似文献   

3.
洱海入湖河流水体悬浮颗粒物有机碳氮来源特征   总被引:14,自引:4,他引:10  
以洱海主要入湖河流水体悬浮颗粒物为研究对象,运用稳定同位素技术,研究了不同季节、不同河流水体悬浮颗粒物中有机碳、氮的来源,探讨了其与流域环境和人类活动之间的关系. 结果表明:①入湖河流水体悬浮颗粒物δ13C的离散程度为夏季<秋季<冬季<春季,变化范围分别为-25.1‰~-16.9‰、-30.0‰~-10.7‰、-20.9‰~-11.0‰和-28.6‰~-14.4‰;δ15N的离散程度为冬季>夏季>春季>秋季,变化范围分别为-0.5‰~8.8‰、5.4‰~10.6‰、3.4‰~7.9‰和6.2‰~8.7‰. ②入湖河流水体悬浮颗粒物有机质的来源,春季以陆源C3植物和自生有机质为主,并且C3植物来源的有机质贡献呈逐渐增大趋势;夏季主要来源于陆源C3植物;秋季仍以陆源C3植物和水生植物的混合来源为主,但水生植物来源有机质比例有所上升;冬季则以陆源C3、C4植物和水生植物来源有机质混合来源为主. ③入湖河流水体悬浮颗粒物中的氮,春季主要来源于土壤流失和水生植物残体,并且土壤流失氮比例逐渐升高;夏季主要来源于土壤流失;秋季来源于土壤流失、化学肥料和水生植物死亡的共同作用;冬季来源于化学肥料、土壤流失和水生植物,并且化学肥料带来的氮比例有所上升.   相似文献   

4.
基于生物光学模型的巢湖悬浮物浓度反演   总被引:1,自引:1,他引:0  
金鑫  李云梅  王桥  张红  王彦飞  尹斌  吴传庆  朱利 《环境科学》2010,31(12):2882-2889
根据2009年6月巢湖32个样点实测的遥感反射率、悬浮物浓度、吸收系数及散射系数等数据,分析巢湖水体各组分的吸收、散射等固有光学特性,确定悬浮颗粒物单位散射系数、后向散射概率等固有光学参数,构建基于生物光学模型的悬浮物浓度反演模型,并利用准同步获取的环境1号卫星CCD影像数据反演巢湖悬浮物浓度.结果表明,555 nm处悬浮颗粒物单位散射系数的平均值为0.48 m2/g,以555 nm为参考波长,建立指数衰减模型对悬浮颗粒物单位散射系数进行参数化,模型的决定系数可以达到0.99;此外,在760~900 nm(Band4)范围内,后向散射概率不具有波长依赖,其值稳定在0.051.利用所得到的表观及固有光学量构建巢湖水体遥感反射率模型,反演巢湖悬浮物浓度,得到实测值与反演值之间的相对误差随着浓度的增加而呈现下降的趋势,平均相对误差为17.25%,由此表明该方法适用于反演悬浮物浓度较高的湖泊水体;利用两景环境1号卫星CCD影像数据反演得到的巢湖悬浮物浓度主要在0~100 mg/L之间变化,其中6月13日巢湖悬浮物浓度40 mg/L的水域占到总面积的54.37%,而6月15日巢湖61.62%的水域悬浮物浓度40 mg/L,且这2 d巢湖悬浮物的分布与当时的气候变化一致.  相似文献   

5.
近年来,随着碳循环过程认识的深入,陆源有机碳的水平迁移在河流和海洋两大生态系统中处于核心地位,厘清其输运通量具有重要意义。本研究于2018年1~12月在长江下游大通站进行月时间分辨率的水体采样,分析水体悬浮颗粒物中有机碳及黑碳浓度,研究其季节变化特征,估算截面通量。结果表明,长江大通站水体中总悬浮颗粒物(Total Suspended Solids, TSS)浓度范围为11.77~141.54 mg/L,平均值为44.07±32.80 mg/L;颗粒态有机碳(Particulate Organic Carbon, POC)浓度范围为0.37~1.52 mg/L,平均值为0.57±0.33 mg/L;颗粒态黑碳(Particulate Black Carbon, PBC)浓度范围为0.04~0.46 mg/L,平均值为0.10±0.11 mg/L。三个参数的季节变化一致,表现为夏季浓度最高,冬季最低,春、秋两季相当。PBC和POC与TSS呈显著的正相关关系,表明了长江流域降雨冲刷和径流携带颗粒物输入是影响大通站水体中PBC和POC浓度变化的主要因素。2018年流经长江大通站PBC和POC...  相似文献   

6.
为有效控制流域水质污染,保障饮用水水源的水质安全,通过测定北京境内密云水库流域水体夏季悬浮颗粒有机质(POM)的浓度水平及其碳、氮同位素特征,同时以京密引水渠水体为参比,对密云水库汇水流域水体POM的来源进行研究。结果表明,密云水库流域水体夏季颗粒态有机碳(POC)浓度的变化范围为0.04~0.71 mg/L,平均值为0.26 mg/L;颗粒态有机氮(PN)浓度的变化范围为0.01~0.24 mg/L,平均值为0.07 mg/L,库区水体POM浓度显著高于入库河流(P0.01),但均普遍低于国内外其他河流、湖库。夏季研究区域内水体POM主要来自内源物质,与库区相比,土壤侵蚀对入库河流POM贡献较高;与白河相比,潮河干支流陆源输入(包括生活源、土壤侵蚀等)对POM的贡献量更高。密云水库流域水体夏季POC浓度显著低于京密引水渠水体(P0.01),两种水体碳素浓度、组分可能存在差异。总体上,密云水库流域水体夏季POM浓度低且主要来源于内源。  相似文献   

7.
通过对南流江丰水期(2015年7月)、枯水期(2016年4月)河口表层沉积物中有机质含量和同位素组成的变化来揭示陆源入海物质输送的季节性差异,评估其对近海环境的影响.结果表明,枯水期水体悬浮颗粒物(SPM)含量自河口向外随水深增加逐步降低(平均值为0.030g/L),丰水期洪水前SPM含量较低(平均值为0.020g/L),洪水后SPM含量显著增高(平均值为0.047g/L),证明枯水期浪、潮对表层沉积物扰动较大使颗粒物大量悬浮,而丰水期浪、潮的影响较小,以洪水控制为主.不同季节沉积物中总有机碳(TOC)、总氮(TN)平均含量相当, TOC平均含量均接近0.46%,丰水期和平水期TN含量分别为0.054%和0.062%,但空间分布差异明显,丰水期在河口东侧半封闭海湾中有机质含量较高,枯水期有机质呈斑块状分布.根据同位素组成特征来看,丰水期陆源有机质自河口向外输送,沿河口向南形成高陆源有机质沉积带,半封闭海湾中以海源有机质为主;而枯水期陆源有机质贡献呈现明显的自河口向外快速降低趋势.丰水期颗粒物自河口向外输送后快速堆积,枯水期在浪、潮作用下使区域内物质强烈混合,这是该区域中沉积环境的主要特...  相似文献   

8.
常温连续流条件下,分别在两个反应器中投加悬浮填料和接种好氧颗粒污泥,通过控制工艺条件,两个反应器中均实现了同步硝化反硝化(SND)。改变进水溶解氧DO浓度、碳氮比(C/N)、有机负荷和NH4+-N负荷,分析比较了两个反应器脱氮的重要工艺条件。试验结果表明,在相同的工艺条件下,悬浮填料脱氮最佳DO浓度为1.0mg/L左右,最佳C/N为12;好氧颗粒污泥脱氮最佳DO浓度为1.5mg/L,最佳C/N为5。提高进水有机负荷,两个反应器COD去除率均稳定在较高的水平。NH4+-N浓度升高时,反应器脱氮效率均降低,好氧颗粒污泥比悬浮填料更耐冲击负荷。  相似文献   

9.
通过对云南抚仙湖流域土壤、植被和主要入湖河流有机碳含量和碳同位素组成的对比研究,探讨了抚仙湖主要入湖河流有机碳来源、空间分布特征及其影响因素。结果表明,抚仙湖入湖河流溶解有机碳(DOC)含量较高,变化范围为2.79~38.02mg/L,且呈西部(19.20mg/L)北部(13.82mg/L)东部(3.37mg/L)的分布特征;河流颗粒有机碳(POC)含量较低,变化范围为0.22~2.68mg/L,且北部(0.84mg/L)西部(0.56mg/L)东部(0.40mg/L)。抚仙湖主要入湖河流水体δ~(13)C_(DOC)值变化范围为-12.6‰~-25.5‰,且随DOC含量增大而略呈偏负趋势,表明抚仙湖入湖河流DOC除来源于流域土壤侵蚀外,农业面源污染和生活污水排放也是重要的贡献源。抚仙湖入湖河流水体δ~(13)C_(POC)值主要分布范围为-23.2‰~-27.0‰,与流域土壤及植物δ~(13)C一致,远离内源POC的δ~(13)C范围,指示河流POC主要来源于流域土壤侵蚀和植物碎屑输入。  相似文献   

10.
多环芳烃在西江高要段水体中的分布与分配   总被引:5,自引:2,他引:3  
邓红梅  陈永亨  常向阳 《环境科学》2009,30(11):3276-3282
为了解西江流域水体中多环芳烃(PAHs)的深度和季节分布及其在溶解相和颗粒相的分配以及控制因素,分别在洪水期(2003年8月和2004年7月)和枯水期(2003年11月和2004年3月)采集了西江高要段水柱.结果表明,溶解相和颗粒相中PAHs的浓度分别为21.7~138 ng/L和40.9~664.8μg/kg;水体中PAHs的总含量(颗粒相及溶解相),洪水期大于枯水期.在溶解相中,PAHs的浓度随深度无明显规律;而在颗粒物中,PAHs的浓度都表现出相同的变化趋势,即中层水PAHs含量最高,表层水PAHs含量最低.溶解相和颗粒相中PAHs的浓度都随悬浮颗粒物的含量增加而增加.从PAHs组成特点来看,溶解相以3环的PAHs为主,而颗粒相以3~4环的PAHs为主.PAHs在颗粒相及溶解相中的分配系数(KP)不受颗粒有机碳浓度控制(R2为0.000 1~0.2),而受颗粒物浓度、及溶解有机碳浓度的共同影响(R2为0.15~0.36),尤其是溶解态的细小碳黑有机质的影响.西江高要段水体PAHs在不同季节的lgKOC值大部分超过经典平衡分配模型的上限.除了2003年11月(R2为0.000 4~0.12,p0.001)之外,其它3个季节PAHs的lgKOC与lgKOW均有较强的相关性(R2为0.29~0.91,p0.05).洪水期颗粒物的亲脂性强于枯水期.  相似文献   

11.
通过对鄱阳湖三江口处柱状沉积物中δ15N、C/N比值、TOC和TN等含量的测定,分析了其有机质及氮素的来源.结果表明: 赣江、抚河、信江及鄱阳湖处柱状沉积物δ15N值变化范围分别为2.44‰~4.55‰、4.03‰~5.84‰、3.79‰~4.81‰及3.42‰~8.13‰.赣江南支其沉积有机质主要来源于土壤有机质;抚河整个柱状沉积物以自生有机物源为主;信江西支在12cm以下其沉积有机质主要受藻类及土壤有机质两种物源的影响,而12cm以上受外源影响比较小;鄱阳湖梅溪嘴表层2cm处沉积有机质来源以藻类为主,而中间6~3cm处主要来源于土壤有机质,7cm以下主要来源于藻类及土壤有机质.赣江南支、信江西支及鄱阳湖梅溪嘴沉积物氮素均主要来源人工合成肥料和土壤流失氮,而抚河主要来源于土壤流失氮.  相似文献   

12.
SPOM(suspended particulate organic matter,悬浮颗粒物中的有机质)是地表水体中有机质的重要组分之一,在全球碳循环和水体富营养化过程中发挥着重要作用.采用连续提取法、δ13C(碳稳定同位素)、三维荧光光谱和平行因子分析技术对呼伦湖夏季SPOM的含量、组分、荧光特性、污染来源及生物有效性进行系统研究.结果表明:①SPOM(以碳质量计)在14.4~31.5 g/kg之间,其中HM(提取残渣)为SPOM的主要组分,占SPOM总量的61.2%.②SPOM中WEOM(水提态有机质)含有类富里酸组分(C1)、类腐殖酸组分(C2)和类色氨酸组分(C3)3个荧光组分,类腐殖质组分(C1+C2)和类蛋白质组分(C3)对总荧光强度的贡献分别为70.4%和29.6%.③SPOM的C/N〔总有机碳(TOC)浓度与总氮(TN)浓度的比值〕和δ13C的值分别在7.53~15.2和-27.2‰~-26.1‰之间.利用C/N和δ13C端元混合模型计算陆源对SPOM的平均贡献率分别为67.2%和68.9%,结果相近.④WEOM的HIX值在4.09~7.40之间,腐殖化程度较高,生物可利用性较差.研究显示,呼伦湖中SPOM以难降解的腐殖质组分为主,腐殖化程度较强,生物可利用性较低,但随着温度升高,预估自生源SPOM的贡献将增大,可能导致其生物可利用性升高,需引起足够的重视.   相似文献   

13.
刘倩  庞燕  项颂  万玲 《中国环境科学》2021,41(10):4850-4856
为解析骆马湖富营养化沉积物的影响因素,2018年9月采集了骆马湖表层沉积物32个点位样品,分析了沉积物的总有机碳(TOC)、总氮(TN)、有机碳同位素(δ13C)和氮同位素(δ15N)指标,研究了沉积物中有机质分布特征及来源.研究表明:表层沉积物TOC含量在0.55%~3.76%,平均值为1.62%;TN含量在0.04%~0.46%,平均值为0.19%;δ13C含量在-27.32‰~-8.36‰,平均值为-14.98‰;δ15N含量在-1.92‰~10.17‰,平均值为7.72‰,TN与TOC在空间分布呈正相关,有机碳、氮同位素受不同来源有机质影响空间分布有较大差异.对δ15N、δ13C与C/N进行定性分析和端元混合模型定量计算,得出骆马湖表层沉积物有机质来源主要有三个:一是人类活动带来的土壤有机质贡献率最大,特别是东岸休闲旅游区贡献较高;二是围网养殖造成的源污染,加大了湖泊富营养化程度;第三是湖泊来水携带较高浓度的污水有机质,对"典型过水性"骆马湖水质影响较大.为了降低骆马湖水体富营养化程度,改善水生态环境质量,急需对湖体有机质的来源加大控制.  相似文献   

14.
太湖典型湖区沉积物外源有机质贡献率研究   总被引:9,自引:5,他引:4  
张远  张彦  于涛 《环境科学研究》2011,24(3):251-258
采用稳定同位素示踪法,分析了太湖竺山湾和南部湖区苕溪港区域表层沉积物碳和氮同位素分布特征,并利用“端元混合法”计算确定了陆源输入对湖泊沉积物有机质的贡献. 结果表明:① δ13C值在南部湖区要高于竺山湾,竺山湾表现为从河道(-27.72‰)到湾内(-23.00‰)逐渐增大的趋势,南部研究区域也表现出同样的趋势,说明外源有机质的贡献不断减少;② δ15N值在陆源有机质中较低,而在内源有机质中较高,没有明显的梯度变化规律;③ C/N比表现为从外源到内源不断减小的趋势;④ 利用“端元混合法”计算外源有机质贡献率发现,δ13C和C/N比的结果较为相似:竺山湾入湖口的外源有机质贡献率为46.51%~52.51%,竺山湾外源有机质贡献率为27.61%~30.85%;而δ15N计算得到的外源有机质贡献率差异较大,竺山湾入湖口处为56.91%~97.47%,竺山湾为74.83%. 讨论认为含氮物质的多来源特征及N同位素分馏作用的复杂性都增加了有机质源解析的不确定性.   相似文献   

15.
于2010年蓄水前(7月)和蓄水后(12月)应用稳定碳、氮同位素方法对汉丰湖食物网中初级生产者和消费者δ13C、δ15N值变化规律进行了调查分析.结果显示:汉丰湖初级生产者颗粒有机物(POM)、固着藻类和水生植物δ13C、δ15N值分别为-28.45‰~-24.78‰、3.72‰~5.76‰,-25.81‰~-21.22‰、3.23‰~4.81‰,-27.99‰~-23.74‰、8.06‰~12.48‰.从蓄水前到蓄水后初级生产者(POM、固着藻类、水生植物)δ13C、δ15N(除水生植物)值均呈现贫乏趋势;消费者δ15N值变化规律与初级生产者一致,但其δ13C值无明显变化;汉丰湖鱼类食物网营养级长度均为3级,消费者中杂食性鱼类居多其碳源主要来源于固着藻类.新形成的汉丰湖水生生态系统已经形成了相对稳定的食物网结构.  相似文献   

16.
通过对鄱阳湖及其主要入湖河流(赣江、抚河、信江、修水及饶河)15个表层沉积物样品中有机碳(TOC)、氮(TN)、C/N值、δ13C及δ15N含量的测定,分析探讨了鄱阳湖及其主支流沉积物有机质和氮素来源.结果表明:鄱阳湖湖区表层沉积物中TOC的含量(干重)在0.63%~1.86%之间,平均值为(1.15±0.35)%(n=9),比其主支流TOC含量高; TN含量变化范围为0.06%~0.16%,平均值为(0.10±0.03)%(n=9),各入湖河流表层沉积物有机质TN含量处在0.03%~0.08%之间,平均值为(0.06±0.02)%(n=6).鄱阳湖湖区沉积物中有机质的碳、氮稳定同位素变化范围分别为-25.66‰~-12.56‰和3.51‰~6.27‰,平均值分别为(-22.48±4.10)‰和(4.71±0.95)‰(n=9).各入湖河流沉积物δ13C和δ15N值含量范围分别为-25.24‰~-19.55‰和0.94‰~4.64‰,平均值分别为(-23.27±2.42)‰和(3.19±1.30)‰(n=6).有机质来源分析表明:土壤有机质、水生维管束植物和浮游植物是鄱阳湖及其主要入湖河流沉积有机质主要的3种来源,其中土壤有机质的贡献最大;土壤有机质和人工合成肥料是其沉积物氮素主要来源,对于入湖河流来说,人工合成肥料贡献更大.  相似文献   

17.
颗粒态营养盐是海洋营养盐的重要组成部分。本文通过2015年8月(夏)、12月(冬),2016年3月(春)、10月(秋)4个季节的采样分析,探讨了大亚湾海域颗粒态氮(PN)、颗粒态磷(PP)的组成分布及其关键控制因素。结果表明,大亚湾水体中PN、PP含量范围分别为2.63~26.24 μmol/L、0.11~3.71 μmol/L,平均含量分别为8.20±4.75 μmol/L、0.39±0.37 μmol/L。PN以颗粒有机氮(PON)为主,占65.0%;PP则以颗粒无机磷(PIP)为主,占63.4%。PN和PP分别约占总氮(TN)、总磷(TP)的24.8%和37.0%。大亚湾PN、PP呈现湾顶至湾口浓度下降的趋势,仅冬季部分形态分布趋势较不明显。二者的含量和分布主要受浮游植物生长与径流输入影响。此外,大亚湾PIN/PIP年均值为13.2±11.1,接近16的Redfield比值,无明显失衡现象,而湾内DIN/DIP年均值高达49.1±39.7,远大于16,说明颗粒态营养盐在维持大亚湾水体中营养盐比例平衡中起到了重要缓冲作用。  相似文献   

18.
基于研发的湖底陷阱捕获内污染技术,在巢湖进行应用研究.结果表明,湖底陷阱可有效收集叶绿素a、有机质、总氮和总磷等湖底沉积物中内源污染物.不同位置和季节湖底陷阱收集的沉积物厚度差异显著,西巢湖收集的污染物含量最多,湖心区域收集污染物量最少;夏秋季节淤积较快,冬春季节淤积略慢.单位面积(1m2)湖底陷阱年收集叶绿素a、有机质、总氮和总磷可分别达2.37~15.28g、8.96~21.82kg、0.78~1.88kg和0.30~0.93kg.综合考虑湖流场、风浪场、湖底污染物分布及厚度,巢湖湖体内沿湖流汇集区可布置6条11~33km的湖底陷阱,并在7个主要入河口布置湖底陷阱,同时可利用现有航道,进一步加深后形成湖底陷阱,可为巢湖内源控制提供新的治理手段和管理方法.  相似文献   

19.
通过对鄱阳湖及其入湖河流(赣江、抚河、信江、修水及饶河)水体悬浮有机质碳、氮同位素含量的测定,分析了鄱阳湖及其入湖河流水体悬浮有机质碳同位素(δ13CPOM)和氮同位素(δ15NPOM)时空分布特征,探讨了其水体悬浮有机质和氮素来源.结果表明,鄱阳湖区枯水期δ13CPOM、δ15NPOM值分布范围分别为-26.59‰~-24.91‰(n=9)和5.88‰~17.49‰(n=9),丰水期分别为-27.10‰~-25.88‰(n=9)和2.99‰~19.69‰(n=9);入湖河流水体枯水期δ13CPOM、δ15NPOM值变化范围分别为-27.79‰~-25.22‰(n=6)和2.87‰~9.26‰(n=6),丰水期分别为-28.07‰~-26.02‰(n=6)和2.12‰~8.75‰(n=6).有机质来源分析表明:C3植物是鄱阳湖区及其入湖河流水体悬浮有机质的主要来源;而氮素来源比较复杂,在不同季节和不同的地点也不尽相同,生活污水、化肥及其土壤流失氮是鄱阳湖区水体悬浮颗粒物氮素的3种主要来源;化肥、陆源有机质及其土壤流失氮是其入湖河流水体悬浮颗粒物氮素的3种主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号