首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s?1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

2.
The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h?1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h?1). Compared with Fe(III) solution, the presence of salicylic acid significantly enhanced the formation of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (˙OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.  相似文献   

3.
The photochemical degradation of bisphenol A (BPA) was studied in the presence of natural humic substances from different origins under simulated solar irradiation. BPA underwent insignificant direct photolysis in neutral water, but rapid photosensitized degradation in four humic substances solutions via pseudo-first-order reaction occurred. The photo-degradation rate of BPA was insensitive to the different initial BPA concentrations and was inhibited in aerated solution compared with the deoxygenated medium. The reactive oxygen species (ROS) such as ·OH and 1O2 produced from excitation of humic substances under irradiation was determined from the quenching kinetic experiment using molecular probe. The five main intermediate photoproducts of BPA in Nordic lake fulvic acid (NOFA) were tentatively identified using gas chromatography/mass spectrometer (GC/MS). Based on the identification of ROS and the analysis of photoproduct formation, the possible phototransformation pathways of BPA were proposed, involving the direct photolysis due to the energy transfer from the triplet state humic substance (3HS*) to BPA molecules and hydroxyl radical addition and oxidation as well.  相似文献   

4.
This study focused on the adsorptive behaviors of humic acid onto freshly prepared hydrous MnO2(s) (δMnO2), and investigated the feasibility of employing δMnO2 for humic acid removal from drinking water. Effects of such parameters as molecular mass of humic acid, kinds of divalent cations on adsorptive behaviors and possible mechanisms involved were investigated. This study indicated that humic acid with higher molecular mass exhibited more tendency of adsorbing onto δMnO2 than that with lower molecular mass. Ca2+ facilitated more humic acid adsorption than Mg2+; UV-Vis spectra analysis indicated higher capabilities of Ca2+ coordinating with acidic functional groups of humic acid than that of Mg2+. Additionally, ζ potential characterization indicated that Ca2+ showed higher potential of increasing gz potential of δMnO2 than Mg2+. Ca2+ of 1.0 mmol/L increased ζ potential of δMnO2 from ?37 mV (pH 7.9) to +7 mV (pH 7.2), while 1.0 mmol/L Mg2+ increased to lower value as ?9 mV (pH 6.5), correspondingly. Fourier transform infrared (FTIR) spectra demonstrated the adsorption of humic acid onto δMnO2, showing the important roles of-COO? functional groups and surface Mn-OH in the adsorption of humic acid onto δMnO2.  相似文献   

5.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s−1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

6.
The sunscreen UV filter 2-phenylbenzimidazole-5-sulfonic acid (PBSA) is an emerging pollutant recently detected in surface waters. PBSA is photolabile in pure water and sunscreen cream. PBSA photoinduces DNA damages. However, the photochemical behavior and environmental persistence of PBSA are not well known. Here, we studied the photochemical transformation of PBSA in sea and continental waters. Results show that photodegradation is dependent on water constituents. Whereas low concentrations of humic acids accelerate PBSA photodegradation slightly, high concentrations of humic acids inhibit the photodegradation. Colloidal organic matters of high molecular weights are the main water constituents inhibiting photodegradation. The estimated solar photolytic half-life of PBSA at environmental concentration levels ranged from 3?days from June to August to 35?days in December. Findings show that PBSA is not persistent in waters that are low in colloidal organic matters.  相似文献   

7.
Both laboratory and commercial preparations of humic substances (HSs) such as fulvic acids and humic acids along with HC1‐HF preparation of Manitoba peat soil organic matter were characterized using Fourier Transformation (FT) proton (1H) and carbon‐13 (13C) nuclear magnetic resonance (NMR) spectroscopy. All the samples were dissolved in a solution of 0.4 N NaOD in D2O. In the case of ‘H‐NMR spectroscopy, all the investigated humic samples displayed resonance absorption peaks in the region of 1–4 ppm indicating the likely presence of aliphatic protons in the preparations. However, with the exception of one fulvic acid preparation (extracted from Manitoba Carrol clay‐loam soil with 0.5 N NaOH), 1H‐NMR spectra of all other samples provided evidence for strong aromatic character. The aliphatic and aromatic characteristics of such samples of HSs were further confirmed with the aid of 13C‐NMR spectra.  相似文献   

8.
The abiotic association between phthalic acid esters (PAEs) and humic substances (HS) in sludge landfill plays an important role in the fate and stability of PAEs. An equilibrium dialysis combined with 14C-labeling was used to study the abiotic association of two abundant PAEs (diethyl phthalate and di-n-butyl phthalate) with humic acid (HA) isolated from a sludge landfill with different stabilization times and different molecular weights. Elemental analysis and Fourier Transform Infrared Spectrophotometer (FTIR) suggested that high K A value of HA was related to the high aromatic content and large molecular weight of HA. The results indicated that the association strength of PAEs with HA depended on both the properties of the PAEs and the characteristics of HA. The K A values of the association were strongly dependent on solution pH, and decreased dramatically as the pH was increased from 3.0 to 9.0. The results suggested that nonspecific hydrophobic interaction between PAEs and HA was the main contributor to the association of the PAEs with HA. The interactive hydrogen-bonds between the HA and the PAEs molecules may also be involved in the association.  相似文献   

9.
Six wastewater treatment plants (WWTPs) were investigated to evaluate the occurrence and removal of N-nitrosodimethylamine (NDMA), NDMA formation potential (FP) and four specific NDMA precursors, dimethylamine (DMA), trimethylamine (TMA), dimethyl- formamide (DMFA) and dimethylaminobenzene (DMAB). DMA and tertiary amines with DMA functional group commonly existed in municipal wastewater. Chemically enhanced primary process (CEPP) had no effect on removal of either NDMA or NDMA FP. In WWTPs with secondary treatment processes, considerable variability was observed in the removal of NDMA (19%-85%) and NDMA FP (16%-76%), moreover, there was no definite relationship between the removal of NDMA and NDMA FP. DMA was well removed in all the six surveyed WWTPs; its removal efficiency was greater than 97%. For the removal of tertiary amines, biologic treatment processes with nitrification and denitrification had better removal efficiency than conventional activated sludge process. The best removal efficiencies for TMA, DMFA and DMAB were 95%, 68% and 72%, respectively. CEPP could remove 73% of TMA, 23% of DMFA and 36% of DMAB. After UV disinfection, only 17% of NDMA was removed due to low dosage of UV was applied in WWTP. Although chlorination could reduce NDMA precursors, NDMA concentration was actually increased after chlorination.  相似文献   

10.
腐殖质的光化学降解及其对环境污染物环境行为的影响   总被引:2,自引:0,他引:2  
腐殖质是地表环境中最重要的有机组分,也是生态环境中最主要的吸光物质之一,对环境污染物的形态、迁移、毒性和生物可利用性有着重要的影响。文章综述了腐殖质的结构特征和光化学降解反应过程和机理,指出腐殖质的光敏化和光化学降解过程对环境污染物的环境行为和归宿有重要的影响。通常,腐殖质的光敏化作用在低质量浓度下,尤其在一定铁离子的协同作用下可促进有机污染物的降解,但高质量浓度的腐殖质由于其本身的吸光作用以及参与自由基的竞争则抑制有机污染物的降解。腐殖质的光化学降解过程降低了环境体系的pH和腐殖质的分子量、破坏了腐殖质的芳环结构、改变了紫外和可见光区域的吸收等,导致其与重金属离子和有机污染物结合能力的下降,造成水体或颗粒态中游离的污染物质量浓度增加,对生态系统将造成更大的危害。目前对腐殖质和环境污染物本身的光化学降解机理已较为清晰,今后应加强对自然水体或土壤系统中腐殖质光化学降解的影响因素,腐殖质光化学降解过程中结构特性的变化机理,以及腐殖质的结构特性与环境污染物结合性质之间的构效关系等方面的研究。特别是随着平流层臭氧空洞的增加,增强了到达地球表面的紫外线强度,研究紫外线增强对腐殖质和有机污染物的降解以及对生态系统的影响可进一步深刻理解太阳光辐射对污染物环境行为和归宿的影响。  相似文献   

11.
The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO 2 · was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl had a negative effect on CT degradation, and high concentration of Cl displayed much strong inhibition. Ten mmol·L–1HCO 3 promoted CT degradation, while 100 mmol·L1NO 3 inhibited the degradation of CT, but SO 4 2– promoted CT degradation in the presence of FA. The measured Cl–concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.  相似文献   

12.
The aim of our research is to apply experimental design methodology to the optimization of photocatalytic degradation of indole present in wastewater. Heterogeneous photocatalysis for the oxidation of organic biorecalcitrant pollutants in water is an environmental promising method. We used the response surface methodology (RSM) for the modelization and optimization of the photodegradation of indole in the presence of titanium dioxide. The effect of indole concentration, UV intensity and stirring speed on the yield of indole degradation was determined. According to the mathematic optimization of the process, the optimum point when 100% of degradation is achieved is given by the following values: UV intensity = 250 W/m2, stirring speed = 536.36 tr/min and initial indole concentration = 10.10 mg/l.  相似文献   

13.
Flubendiamide is a ryanodine insecticide that shows a strong insecticidal activity and is relatively safe for non-target organisms. Actually only flubendiamide and its product desiodo-flubendiamide have been studied during catalytic degradation using TiO2 and ZnO. Therefore, here we tested the photocatalytic removal of flubendiamide in the presence of nitrates or humic acids. Degradation kinetics were monitored using high-performance liquid chromatography ultraviolet–visible detector. Product identification was done using a high-resolution time-of-flight mass spectrometer coupled to a gas chromatograph (GC-HRMS). Results show that the addition of humic acids at 10 mg l?1 increased the removal of flubendiamide more than five times. The addition of nitrate ions at 10 mg l?1 had no influence. The removal of flubendiamide was more than ten times faster in experiments with oxygen purging. Fourteen degradation products were identified, which can be classified into three groups: phthalimide and related phthalic acid derivatives, fluorinated species related to the second amide moiety, and advanced transformation products.  相似文献   

14.
The photodegradation of Acid blue 74 in aqueous solution employing a H2O2/ultraviolet system in a photochemical reactor was investigated. The kinetics of decolorization were studied by application of a kinetic model. The results show that the reaction of decolorization followed pseudo-first order kinetics. We demonstrate that there is an optimum H2O2 concentration, at which the rate of the decolorization reaction is maximum. Irradiation at 253.7 nm of the dye solution in the presence of H2O2 results in complete discoloration after ten minutes of treatment.  相似文献   

15.
The acute toxicity of monodispersed 6 nm and <100 nm poly-dispersed copper oxide nanoparticles toward Daphnia magna was assessed using 48 h immobilization tests. CuSO4 was used as a reference. Four different exposure conditions were tested, to study whether the toxicity of the nanoparticle suspensions changed in a way similar to what is known for dissolved Cu: first in ISO standard test conditions (pH 7.8), second with slight acidity (pH 6.5), third in the presence of citric acid, and fourth in the presence of humic acid. For all four exposure conditions, the toxicity of Cu employed in the three forms followed the same sequence, i.e., CuSO4 > monodispersed 6 nm CuO ? poly-dispersed CuO. The toxicity of all Cu forms decreased from pH 6.5, ? pH 7.8, > pH 7.8 + citric acid, to ? pH 7.8 + humic acid. This pattern is in agreement with concentrations of Cu2+ calculated using the equilibrium model MINTEQ. These findings show that the acute toxicity of copper oxide nanoparticles is governed by test water composition and the chemical species Cu2+.  相似文献   

16.
Ultraviolet (UV) spectroscopy is a valid surrogate for monitoring the formation of disinfection by-products (DBPs). Sodium thiosulphate is commonly used to remove disinfectant residual. However, it produces interferences with absorbance in the UV region. Relationship between trihalomethane (THM) formation and differential UV absorbance (−ΔA λ ) was explored in the presence of sodium thiosulphate. Chlorination of two synthetic and five natural waters was carried out. Sodium thiosulphate showed high UV absorption at 254 nm. This effect can be overcome selecting a higher wavelength. Optimum wavelength varied being about 290 nm for fulvic acid and 300 nm for humic acid type natural organic matter. Correlation between THMs formation and −ΔA λ was linear for all the analysed samples. Regression curves do not pass through zero indicating the existence of a threshold absorbance decreasment. Once it is surpassed THM release begins. Chlorination of surface waters showed that the presence of bromide significantly increases THMs vs. −ΔA λ slope. Furthermore, slope decreased with the aromaticity–hydrophobicity of organic matter.  相似文献   

17.
The photodegradation of 14C-benthiocarb in water, on a glass surface, on soil and silica gel TLC plates was studied. the study was designed to obtain some information of its dissipation and photodegradation under various laboratory conditions. Benthiocarb degrades readily when exposed to either sunlight or UV light (254 nm). However, it is degraded much faster by UV light than by sunlight. Also, benthiocarb decomposes faster in water or on a glass surface or silica gel surface than on a soil surface. the half-life of benthiocarb exposed to UV light was: 1 hr on glass surface; 1.5 hrs in water; 2 hrs on silica gel TLC plate; 20 hrs on soil TLC plate. Benthiocarb in water, and exposed to sunlight, had a half-life of approximately 3 days. the following major photodegradation products were identified: 4-chlorobenzyl alcohol; 4-chlorobenzaldehyde; 4-chlorobenzoic acid.  相似文献   

18.
Sorption by humic acids is known to modify the bioavailability and toxicity of metals in soils and aquatic systems. The sorption of cadmium(II) and copper(II) to two soil humic acids was measured at pH 6.0 using ion-selective electrode potentiometric titration at different temperatures. Sorption reactions were studied with all components in aqueous solution, or with the humates in suspension. Adsorption reactions were described using a multiple site-binding model, and a model assuming a continuous log-normal distribution of adsorption constants. Adsorption of Cu2+ was more favourable than adsorption of Cd2+. The log-normal distribution model provided the closest fit to observations and allowed parameterisation of adsorption data using a mean adsorption constant (log K μ). Sorption of Cd2+ to dissolved humic acids increased slightly in extent and sorption affinity with increasing temperature, but the effect was small (log K μ 2.96–3.15). A slightly greater temperature effect occurred for sorption of Cd2+ to solid-phase humic acids (log K μ 1.30–2.08). Sorption of copper(II) to both aqueous- and colloidal-phase humates showed more pronounced temperature dependence, with extent of sorption, and sorption affinity, increasing with increasing temperature (log K μ 3.4–4.9 in solution and 1.4–4.5 in suspension). The weaker adsorption of Cd2+ than Cu2+, and smaller temperature effects for dissolved humates than suspended humates, suggested that the observed temperature effects had a kinetic, rather than thermodynamic, origin. For any metal-to-ligand ratio, free metal ion concentration, and by inference metal bioavailability, decreased with increasing temperature. The consistency of the data with kinetic rather than thermodynamic control of metal bioavailability suggests that equilibrium modelling approaches to estimating bioavailability may be insufficient.  相似文献   

19.
Nanoscale zero-valent iron, named nano-Fe0, is a reagent used to degrade trichloroethylene in groundwater. However, the efficiency of nano-Fe0 is moderate due to issues of dispersion and reactivity. As an alternative we synthesized bentonite-supported nanoscale Fe/Ni bimetals, named bentonite-Fe/Ni, to test the degradation of trichloroethylene in the presence of Suwannee River humic acids, as a representative of natural organic matter. 0.1 mmol/L trichloroethylene was reacted with 0.5 g/L of nano-Fe0, bentonite-Fe, Fe/Ni, and bentonite-Fe/Ni nanoparticles. Results show first that without humic acids the reaction rate constants k obs were 0.0036/h for nano-Fe0, 0.0101/h for bentonite-Fe, 0.0984/h for Fe/Ni, and 0.181/h for bentonite-Fe/Ni. These findings show that bentonite-Fe/Ni is the most efficient reagent. Second, the addition of humic acids increased the rate constant from 0.178/h for 10 mg/L humic acids to 0.652/h for 40 mg/L humic acids, using the bentonite-Fe/Ni catalyst. This finding is explained by accelerated dechlorination by faster electron transfer induced by humic quinone moieties. Indeed, the use of 9, 10-anthraquinone-2, 6-disulfonate as a humic analogue gave similar results.  相似文献   

20.
The photocatalytic formation of hydrogen peroxide over ZnO and TiO2thin films has been investigated in aqueous phase in the presence of molecular oxygen as an electron acceptor. These films are highly porous and showed enhanced catalytic activity in the photochemical formation of hydrogen peroxide. The amount of H2O2formed during 2 hour light illumination is 4–6 μM and the rates of formation of hydrogen peroxide of both the films are almost comparable. The yield of hydrogen peroxide increases with the increase in irradiation time and a trend of steady state concentration of H2O2is observed in the case of TiO2thin film. Photodissolution of ZnO particles is observed in some extent during the process of prolonged UV light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号