首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net primary production (NPP) of terrestrial ecosystems provides food, fiber, construction materials, and energy to humans. Its demand is likely to increase substantially in this century due to rising population and biofuel uses. Assessing national forest NPP is of importance to best use forest resources in China. To date, most estimates of NPP are based on process-based ecosystem modeling, forestry inventory, and satellite observations. There are little efforts in using spatial statistical approaches while large datasets of in-situ observed NPP are available for Chinese forest ecosystems. Here we use the surveyed forest NPP and ecological data at 1,266 sites, the data of satellite forest coverage, and the information of climate and topography to estimate Chinese forest NPP and their associated uncertainties with two geospatial statistical approaches. We estimate that the Chinese forest and woodland ecosystems have total NPP of 1,325 ± 102 and 1,258 ± 186 Tg C year−1 in 1.57 million km2 forests with a regression method and a kriging method, respectively. These estimates are higher than the satellite-based estimate of 1,034 Tg C year−1 and almost double the estimate of 778 Tg C year−1 using a process-based terrestrial ecosystem model. Cross-validation suggests that the estimates with the kriging method are more accurate. Our developed geospatial statistical models could be alternative tools to provide national-level NPP estimates to better use Chinese forest resources.  相似文献   

2.
Using a case study of the Lake Abitibi Model Forest (LAMF), this study aims to assess the temporal and spatial variability in carbon storage during 1990–2000, and to present a comprehensive estimation of the carbon budget for LAMF's ecosystems. As well, it provided the information needed by local forest managers to develop ecological and carbon-based indicators and monitor the sustainability of forest ecosystems. Temporal and spatial carbon dynamics were simulated at the landscape level using ecosystem model TRIPLEX1.0 and Geographical Information System (GIS). The simulated net primary productivity (NPP) and carbon storage in forest biomass and soil were compared with field data and results from other studies for Canada's boreal forests. The results show that simulated NPP ranged from 3.26 to 3.34 tC ha−1 yr−1 in the 1990s and was consistent with the range measured during the Boreal Ecosystem-Atmosphere Studies (BOREAS) in central Canada. Modeled NPP was also compared with the estimation from remote sensing data. The density of total above-and belowground biomass was 125.3, 111.8, and 106.5 tC ha−1 for black spruce, trembling aspen, and jack pine in the LAMF ecosystem, respectively. The total carbon density of forested land was estimated at 154.4 tC ha−1 with the proportion of 4:6 for total biomass and soil. The analysis of net carbon balance of ecosystem suggested that the LAMF forest ecosystem was acting as a carbon sink with an allowable harvest in the 1990s.  相似文献   

3.
The 50% variation in the estimates of carbon (C) content in the forest soils of Russia at present is caused by confusion of terms and ignorance of the soil geographical representativeness in forests. The GIS-based analysis closes the gap to the estimate published earlier by Alexeyev and Birdsey (1994, p. 170). The average soil carbon density (SCD) for the 0.3 meter (m) layer of the forest soils in Russia is about 8.1 kg C m−2; the 1 m layer captures some 11.4 kg C m−2; and the 2 m layer holds nearly 12.3 kg C m− 2. The mass of C is about 61.6 Pg C concentrated in the 0.3 m layer of forest soils; the 1 m layer accumulates 87.6 Pg C and the 2 m layer holds about 94.1 Pg C. The C content in soils of the forest zone is much higher for Russia. The SCD is 18.8 kg C m− 2 and the soil C pool (SCP) is 223.6 Pg C in 1 m layer. Peat soils contribute a considerable portion of C to the forest zone of the country. The cold climate, permafrost and vegetation residues that are rich in recalcitrant compounds support a high accumulation rate of organic matter and associated nutrients in soils. This conservation is a mechanism to keep the production potential of the boreal ecosystems high in spite of their relatively low actual productivity in present environments.  相似文献   

4.
Carbon dioxide release due to change in land usein China mainland   总被引:4,自引:0,他引:4  
CarbondioxidereleaseduetochangeinlanduseinChinamainlandWangXiaoke;ZhuangYahui;FengZongwei(ResearchCenterforEco-EnvironmentalS...  相似文献   

5.
Although forest conservation activities, particularly in the tropics, offer significant potential for mitigating carbon (C) emissions, these types of activities have faced obstacles in the policy arena caused by the difficulty in determining key elements of the project cycle, particularly the baseline. A baseline for forest conservation has two main components: the projected land-use change and the corresponding carbon stocks in applicable pools in vegetation and soil, with land-use change being the most difficult to address analytically. In this paper we focus on developing and comparing three models, ranging from relatively simple extrapolations of past trends in land use based on simple drivers such as population growth to more complex extrapolations of past trends using spatially explicit models of land-use change driven by biophysical and socioeconomic factors. The three models used for making baseline projections of tropical deforestation at the regional scale are: the Forest Area Change (FAC) model, the Land Use and Carbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD) model. The models were used to project deforestation in six tropical regions that featured different ecological and socioeconomic conditions, population dynamics, and uses of the land: (1) northern Belize; (2) Santa Cruz State, Bolivia; (3) Paraná State, Brazil; (4) Campeche, Mexico; (5) Chiapas, Mexico; and (6) Michoacán, Mexico. A comparison of all model outputs across all six regions shows that each model produced quite different deforestation baselines. In general, the simplest FAC model, applied at the national administrative-unit scale, projected the highest amount of forest loss (four out of six regions) and the LUCS model the least amount of loss (four out of five regions). Based on simulations of GEOMOD, we found that readily observable physical and biological factors as well as distance to areas of past disturbance were each about twice as important as either sociological/demographic or economic/infrastructure factors (less observable) in explaining empirical land-use patterns. We propose from the lessons learned, a methodology comprised of three main steps and six tasks can be used to begin developing credible baselines. We also propose that the baselines be projected over a 10-year period because, although projections beyond 10 years are feasible, they are likely to be unrealistic for policy purposes. In the first step, an historic land-use change and deforestation estimate is made by determining the analytic domain (size of the region relative to the size of proposed project), obtaining historic data, analyzing candidate baseline drivers, and identifying three to four major drivers. In the second step, a baseline of where deforestation is likely to occur–a potential land-use change (PLUC) map—is produced using a spatial model such as GEOMOD that uses the key drivers from step one. Then rates of deforestation are projected over a 10-year baseline period based on one of the three models. Using the PLUC maps, projected rates of deforestation, and carbon stock estimates, baseline projections are developed that can be used for project GHG accounting and crediting purposes: The final step proposes that, at agreed interval (e.g., about 10 years), the baseline assumptions about baseline drivers be re-assessed. This step reviews the viability of the 10-year baseline in light of changes in one or more key baseline drivers (e.g., new roads, new communities, new protected area, etc.). The potential land-use change map and estimates of rates of deforestation could be re-done at the agreed interval, allowing the deforestation rates and changes in spatial drivers to be incorporated into a defense of the existing baseline, or the derivation of a new baseline projection.  相似文献   

6.
This study examines the correlation between deforestation, carbon dioxide emissions and potential causal factors of land-use change within an area of 2.7 million ha in Chiapas, southern Mexico between 1975 and 1996. Digitized land-use maps and interpreted satellite images were used to quantify land-use changes. Geo-referenced databases of population and digitized maps of roads and topography were used to determine which factors could be used to explain observed changes in land-use. The study analyzed the relationship between carbon emissions during this period and two types of possible causal factors: “predisposing” factors that determine the susceptibility of a particular area of forest to change (slope, distance to agriculture and roads, land tenure) and “driving” factors representing the pressures for change (population density, poverty). The correlated factors were combined in risk matrices, which show the proportion of vulnerable carbon stocks lost in areas with defined social, economic and environmental characteristics. Such matrices could be used to predict future deforestation rates and provide a verifiable evidence-base for defining baseline carbon emissions for forest conservation projects. Based on the results of the analysis, two matrices were constructed, using population density as the single most important driving factor and distance from roads and distance from agriculture as the two alternatives for the predisposing factors of deforestation.  相似文献   

7.
The application of bio-char (charcoal or biomass-derived black carbon (C)) to soil is proposed as a novel approach to establish a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. Apart from positive effects in both reducing emissions and increasing the sequestration of greenhouse gases, the production of bio-char and its application to soil will deliver immediate benefits through improved soil fertility and increased crop production. Conversion of biomass C to bio-char C leads to sequestration of about 50% of the initial C compared to the low amounts retained after burning (3%) and biological decomposition (< 10–20% after 5–10 years), therefore yielding more stable soil C than burning or direct land application of biomass. This efficiency of C conversion of biomass to bio-char is highly dependent on the type of feedstock, but is not significantly affected by the pyrolysis temperature (within 350–500 C common for pyrolysis). Existing slash-and-burn systems cause significant degradation of soil and release of greenhouse gases and opportunies may exist to enhance this system by conversion to slash-and-char systems. Our global analysis revealed that up to 12% of the total anthropogenic C emissions by land use change (0.21 Pg C) can be off-set annually in soil, if slash-and-burn is replaced by slash-and-char. Agricultural and forestry wastes such as forest residues, mill residues, field crop residues, or urban wastes add a conservatively estimated 0.16 Pg C yr−1. Biofuel production using modern biomass can produce a bio-char by-product through pyrolysis which results in 30.6 kg C sequestration for each GJ of energy produced. Using published projections of the use of renewable fuels in the year 2100, bio-char sequestration could amount to 5.5–9.5 Pg C yr−1 if this demand for energy was met through pyrolysis, which would exceed current emissions from fossil fuels (5.4 Pg C yr−1). Bio-char soil management systems can deliver tradable C emissions reduction, and C sequestered is easily accountable, and verifiable.  相似文献   

8.
The occurrence of extreme rainfall events and associated flooding has been enhanced due to climate changes, and is thought to influence the flux of total dissolved iron(TDI) in rivers considerably. Since TDI is a controlling factor in primary productivity in marine ecosystems, alteration of riverine TDI input to the ocean may lead to climate change via its effect on biological productivity. During an extreme rainfall event that arose in northeastern China in 2013, water samples were collected in the midstream of the Heilongjiang River to analyze the concentration and species of TDI as well as other basic parameters. The speciation of TDI was surveyed by filtration and ultrafiltration methods.Compared with data monitored from 2007 to 2012, the concentration of TDI increased significantly during this event, with an average concentration of 1.11 mg/L, and the estimated TDI flux reached 1.2 × 105 tons, equaling the average annual TDI flux level.Species analysis revealed that low-molecular-weight complexed iron was the dominant species, and the impulse of TDI flux could probably be attributed to the hydrological connection to riparian wetlands and iron-rich terrestrial runoff. Moreover, dissolved organic matter played a key role in the flux, species and bioavailability of TDI. In addition,there is a possibility that the rising TDI flux could further influence the transport and cycling of nutrients and related ecological processes in the river, estuary coupled with the coastal ecosystems, which merits closer attention in the future.  相似文献   

9.
Among the numerous parameters affecting the membrane bioreactor (MBR) performance, the aeration intensity is one of the most important factors. In the present investigation, an anoxic/aerobic-type (A/O-type) sequencing batch MBR system, added anoxic process as a pretreatment to improve the biodegradability of azo dye wastewater, was investigated under different aeration intensities and the impact of the aeration intensity on effluent quantity, sludge properties, extracellular polymeric substances (EPS) amount generated as well as the change of permeation flux were examined. Neither lower nor higher aeration intensities could improve A/O-type sequencing batch MBR performances. The results showed 0.15 m3·h−1 aeration intensity was promising for treatment of azo dye wastewater under the conditions examined. Under this aeration intensity, chemical oxygen demand (COD), ammonium nitrogen and color removal as well as membrane flux amounted to 97.8%, 96.5%, 98.7% and 6.21 L·m−2·h−1, respectively. The effluent quality, with 25.0 mg·L−1COD, 0.84 mg·L−1 ammonium nitrogen and 8 chroma, could directly meet the reuse standard in China. In the meantime, the sludge relative hydrophobicity, the bound EPS, soluble EPS and EPS amounts contained in the membrane fouling layer were 70.3%, 52.0 mg·g−1VSS, 38.8 mg·g−1VSS and 90.8 mg·g−1VSS, respectively, which showed close relationships to both pollutant removals and membrane flux.  相似文献   

10.
三峡库区石盘丘小流域氮磷输出形态及流失通量   总被引:2,自引:0,他引:2  
小流域作为三峡库区非点源污染源头,是缓解水体水质恶化的重点防控对象.在三峡库区选取具有多种土地利用类型的石盘丘小流域为研究对象,对流域出水口断面水量水质进行连续监测,分析了小流域氮、磷污染物随降雨径流流失的浓度及形态变化特征,并计算小流域的污染物流失通量,分析影响氮、磷养分流失的主要人为和自然因素,对农业非点源污染特别是三峡库区的农业非点源污染研究具有相当重要的现实意义.结果表明,流域降雨量随季节变化明显,降雨多分布在4~6月,为小流域氮、磷流失的主要输出时期,占全年总氮、总磷负荷的58.94%和67.60%.石盘丘小流域年径流总量为8.02×10~4 m~3,总氮年流失通量为5.04 kg·hm~(-2),其中以硝态氮(2.54 kg·hm~(-2))为流失主体;输出总磷为0.534 kg·hm~(-2),可溶性总磷(0.422kg·hm~(-2))占总磷流失通量的79.00%.因此,对于石盘丘小流域来说,需要注意防范施肥和降雨期重合时水田氮磷流失.  相似文献   

11.
The evaluation of biospheric role of the boreal forests in the accumulation of carbon is connected with the evaluation of organic matter (OM) pool in soils. The research sites were larch forests, they are situated on Nizhne-Tungusskoe Plateau. Larch forests of feather-moss and lichen types (110 and 380 years old) were formed on 'ochric podbur' soils. Litter stocks are 3.5–4.5 kg m− 2 with thickness 10–25 cm. Cryomezomorphic northern taiga soils contains 38–73 t (carbon) ha− 1. Pool of fast mineralized OM has average value 38.1 t (carbon) ha− 1, including 20.5 and 6.4 t (Carbon) ha− 1 of labile compounds on surface and in the soil, and 11.2 t (carbon) ha− 1 of mobile OM. Microbial mass reaches 1.78–3.47 t (carbon) ha− 1, its proportion is 3.6–4.9% of the total OM carbon. Zoomass of feather-moss larch forest is 0.20–0.61 * 10− 2, in lichen larch forest −0.01–0.07 * 10− 2 t (carbon) ha− 1. A pool of resistant to biological decomposition and bonded to mineral soil matrix OM is 17.7 t (carbon) ha− 1 and it varies from 18.6 to 29.0 in feather-moss larch forest, and from 6.4 to 17.0 t (carbon) ha− 1 in lichen larch forest. Two-years field experiment has been performed to determine transformation rates of various plant litter fractions and to clarify the role of soil biota in these processes. The results showed participation of all biota groups in the decomposition of plant residues caused weight loss of larch-needles and root mortmass. Isolation of organic matter from all-size invertebrate groups leads to some decrease of decomposition activity.  相似文献   

12.
Recent market slump in rice, less rainfall during monsoon, high temperature and scarcity of water during dry season leads to lower grain yield and less profit from rice cultivation in India. Farmers’ grow upland crops like chickpea (Cicer arietinum), greengram (Vigna radiate), mustard (Brassica nigra), corn (Zea maize), pigeonpea (Cajanus cajan), potato (Solanum tuberosum), sunflower (Helianthus annuus) etc. along with rice (Oryza sativa) during the dry season. However, knowledge of greenhouse gas (GHG) emission from these rice based cropping systems is very limited. In the present study four rice based cropping systems was studied along with rice-rice rotation system as control in respect of GHG emission, yield potential and economic feasibility. Conventional plantation and fertilizer application methodology was followed for each crop. Methane (CH4) and nitrous oxide (N2O) flux from field plots were studied with conventional closed chamber method using gas chromatograph. CH4 flux was recorded highest from rice-rice rotation plots (304.25 kg ha−1). N2O flux was recorded 1.02 kg ha−1 from rice-rice rotation system during wet season. However, during wet season, higher N2O flux (1.93 kg ha−1) was recorded from rice-potato-sesame rotation plots. Annual N2O flux was also recorded significantly low (3.42 kg ha−1) from rice-rice rotation plots and high (6.19 kg ha−1) from rice-chickpea-greengram rotation plots. Significantly lower annual grain yield was recorded from rice-rice rotation plots (9.25 Mg ha−1) whereas it was 18.84 Mg rice eq ha−1 from rice-potato-sesame rotation system. The global warming potential (GWP) of rice-rice rotation system was recorded significantly high (8.62 Mg CO2 ha−1) compare to plots with different rice based cropping systems. Computing all C-emission from cradle-to-grave, highest total C-cost was recorded from the rice-rice rotation system ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit (1248.21 ha−1) and C-credit ($38.60 ha−1). The result of the study may be limited to the study region; however, the study has potential use in respect to the development of agriculture practice for adaptation to climate change.  相似文献   

13.
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m2/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (−5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (−2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS—a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.  相似文献   

14.
The Great American Biotic Interchange has been the predominant paradigm for explaining biotic diversification in the Nearctic/Neotropical overlap or Mexican Transition Zone, which is commonly explained by the collision of the North and South American continental plates, which began in the Oligocene and fused both landmasses. In the most far-reaching cladistic biogeographical analysis of the area to date, evidence has been found supporting the existence of a remnant Caribbean region extending from eastern Mexico to southeastern USA, a hypothesis that challenges current views of the Great American Biotic Interchange and the Mexican Transition Zone. We show herein that an older terrane, which has drifted to the present day positions of Yucatan and Cuba, may be biogeographically linked to an early ‘Gondwanan’ biota of the Paleocene (ca. 60 Ma). The evidence indicates an east–west biotic divide in Mexico, existing before the collision and formation of Central America. The south–north division of the country, previously recognized by several authors as associated with the Great American Biotic Interchange and the Mexican Transition Zone, is of a younger age. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Microwave-hydrothermal treatment of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water with persulfate (S2O82−) has been found effective. However, applications of this process to effectively remediate PFOA pollution require a better understanding on free-radical scavenging reactions that also take place. The objectives of this study were to investigate the effects of pH (pH = 2.5, 6.6, 8.8, and 10.5), chloride concentrations (0.01–0.15 mol·L−1), and temperature (60°C, 90°C, and 130°C) on persulfate oxidation of PFOA under microwave irradiation. Maximum PFOA degradation occurred at pH 2.5, while little or no degradation at pH 10.5. Lowering system pH resulted in an increase in PFOA degradation rate. Both high pH and chloride concentrations would result in more scavenging of sulfate free radicals and slow down PFOA degradation. When chloride concentrations were less than 0.04 mol·L−1 at 90°C and 0.06 mol·L−1 at 60°C, presence of chloride ions had insignificant impacts on PFOA degradation. However, beyond these concentration levels, PFOA degradation rates reduced significantly with an increase in chloride concentrations, especially under the higher temperature.  相似文献   

16.
This paper provides a methodology for generating forest management plans, which explicitly maximize carbon (C) sequestration at the forest-landscape level. This paper takes advantage of concepts first presented in a paper by Meng et al. (2003; Mitigation Adaptation Strategies Global Change 8:371–403) by integrating C-sequestration objective functions in existing wood supply models. Carbon-stock calculations performed in WoodstockTM (RemSoft Inc.) are based on C yields generated from volume table data obtained from local Forest Development Survey plots and a series of wood volume-to-C content conversion factors specified in von Mirbach (2000). The approach is used to investigate the impact of three demonstration forest-management scenarios on the C budget in a 110,000 ha forest in south-central New Brunswick, Canada. Explicit demonstration scenarios addressed include (1) maximizing timber extraction either by clearcut or selection harvesting for greatest revenue generation, (2) maximizing total C storage in the forest landscape and in wood products generated from harvesting, and (3) maximizing C storage together with revenue generation. The level of clearcut harvesting was greatest for scenario 1 (≥15 × 104 m3 of wood and ≥943 ha of land per harvesting period), and least for scenario 2 (=0 m3 per harvesting period) where selection harvesting dominated. Because softwood saw logs were worth more than pulpwood ($60 m−3 vs. $40 m−3) and were strategic to the long-term storage of C, the production of softwood saw logs exceeded the production of pulpwood in all scenarios. Selection harvesting was generally the preferred harvesting method across scenarios. Only in scenario 1 did levels of clearcut harvesting occasionally exceed those of selection harvesting, mainly in the removal of old, dilapidated stands early in the simulation (i.e., during periods 1 through 3). Scenario 2 provided the greatest total C-storage increase over 80 years (i.e., 14 × 106 Mg C, or roughly 264 Mg ha−1) at a cost of $111 per Mg C due to lost revenues. Scenarios 3 and 1 produced reduced storage rates of roughly 9 × 106 Mg C and 3 × 106 Mg C, respectively; about 64% and 22% of the total, 80-year C storage calculated in scenario 2. The bulk of the C in scenario 2 was stored in the forest, amounting to about 76% of the total C sequestered.  相似文献   

17.
Batch biosorption experiments were conducted to remove Cr(III) from aqueous solutions using activated sludge from a sewage treatment plant. An investigation was conducted on the effects of the initial pH, contact time, temperature, and initial Cr(III) concentration in the biosorption process. The results revealed that the activated sludge exhibited the highest Cr(III) uptake capacity (120 mg·g−1) at 45°C, initial pH of 4, and initial Cr(III) concentration of 100 mg·L−1. The biosorption results obtained at various temperatures showed that the biosorption pattern accurately followed the Langmuir model. The calculated thermodynamic parameters, ΔGo° ( − 0.8–4.58 kJ·mol−1), ΔH° (15.6–44.4 kJ·mol−1), and ΔS° (0.06–0.15 kJ·mol−1·K−1) clearly indicated that the biosorption process was feasible, spontaneous, endothermic, and physical. The pseudo first-order and second-order kinetic models were adopted to describe the experimental data, which revealed that the Cr(III) biosorption process conformed to the second-order rate expression and the biosorption rate constants decreased with increasing Cr (III) concentration. The analysis of the values of biosorption activation energy (E a = −7 kJ·mol−1) and the intraparticle diffusion model demonstrated that Cr(III) biosorption was film-diffusion-controlled.  相似文献   

18.
Climate change is one of the most pressing environmental problems humanity is facing today. Forest ecosystems serve as a source or sink of greenhouse gases, primarily CO2. With support from the Canadian Climate Change Fund, the Community-based Natural Resource Management for Carbon Sequestration project in East Timor (CBNRM-ET) was implemented to “maintain carbon (C) stocks and increase C sequestration through the development of community-based resource management systems that will simultaneously improve livelihood security”. Project sites were in the Laclubar and Remexio Sub-districts of the Laclo watershed. The objective of this study was to quantify baseline C stocks and sequestration benefits of project components (reforestation with fast-growing species, primarily Casuarina equisetifolia, and agroforestry involving integration of Paraserianthes falcataria). Field measurements show that mature stands (≥30 years) of P. falcataria and C. equisetifolia contain up to 200 Mg C ha−1 in above ground biomass, indicating the vast potential of project sites to sequester carbon. Baseline C stocks in above ground biomass were very low in both Laclubar (6.2 Mg C ha−1 for reforestation sites and 5.2 Mg C ha−1 for agroforestry sites and Remexio (3.0 Mg C ha−1 for reforestation and 2.5 Mg C ha−1 for agroforestry). Baseline soil organic C levels were much higher reaching up to 160 Mg C ha−1 in Laclubar and 70 Mg C ha−1 in Remexio. For the next 25 years, it is projected that 137 671 Mg C and 84 621 Mg C will be sequestered under high- and low C stock scenarios, respectively.  相似文献   

19.
Sathaye  J.A.  Makundi  W.R.  Andrasko  K.  Boer  R.  Ravindranath  N.H.  Sudha  P.  Rao  S.  Lasco  R.  Pulhin  F.  Masera  O.  Ceron  A.  Ordonez  J.  Deying  X.  Zhang  X.  Zuomin  S. 《Mitigation and Adaptation Strategies for Global Change》2001,6(3-4):185-211
This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach – Comprehensive Mitigation Assessment Process (COMAP) – to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200× 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.  相似文献   

20.
Net Ecosystem Production of Boreal Larch Ecosystems on the Yenisei Transect   总被引:1,自引:0,他引:1  
The study was carried out in the Turukhansk Research Station of Yenisei Transect (65°46N, 89°25E). Larch (Larix gmelinii (Rupr.) Rupr.) is the dominant overstory tree species. The research has been conducted on four permanent test plots in same-age mature (110-year old) and overmature (380-year old) post-fire larch stands of green moss and lichen groups of forest type. Carbon cycle parameters were assessed based on a biometric method. Quantitative analysis of carbon pools and fluxes shows that net ecosystem production of north taiga larch stands averages 32% of net primary production. Sink of atmospheric CO2 makes 1.22 and 0.74 t C ha− 1 year− 1 for mature and overmature green moss larch stands, and 0.65 and 0.35 t C ha− 1 year− 1 for lichen type. Net carbon sink in the tree layer make up 9% of net primary production carbon, ground vegetation – 15%, and dead plant residues accumulation – 8% of atmospheric carbon uptake via photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号