首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allorchestes compressa is the dominant macroinvertebrate species in wrack accumulations on surf zones of south-western Australia. These amphipods were provided with a choice of macrophyte material representing brown and red algae and seagrass in a series of preference experiments in the laboratory and field. Feeding experiments showed that A. compressa exhibited a strong preference for particular types of macrophytes (P < 0.01). Amphipods primarily consumed brown algae, with 69–98% of the biomass of Ecklonia radiata and 64% of the biomass of Sargassum sp. lost over the experiments. This study has shown that the amphipod A. compressa exhibits a clear preference for brown algae over red algae and seagrass as food. In terms of habitat preference, tank experiments using a series of pair-wise comparisons showed that, in the absence of fish predators, A. compressa selected seagrass as its preferred habitat over the other types of wrack (P < 0.001). When satiated or starved, between 68 and 83 and 79 and 98% of amphipods were found in Amphibolis and Posidonia, respectively. In contrast, field-cage experiments revealed that A. compressa preferred either mixed wrack, brown algae or red algae over seagrass as a habitat (P < 0.01). The contrasts between results from the laboratory and field suggest that other factors such as the presence of predators, water flow and light could influence habitat choice in the surf zone. This study shows that allochthonous material transported to surf zones from other habitats therefore play different roles in driving secondary production in this shoreline habitat.  相似文献   

2.
Utilization of algae for decorating by the intertidal majid crab Tiarinia cornigera was examined by laboratory experiments in relation to availability of algae, presence of a predator, and the presence of conspecific and heterospecific crabs. Different availabilities of decorating materials had a positive correlation on decorating amount by juveniles, while the correlation was not so clear in subadults. The amount of decorating decreased with increasing density of conspecific crabs in the presence of a predator, but there was so clear relationship in the absence of a predator. The decrease in decorating under high density could be due to intraspecific aggression, because the superior crab, in fighting, was found to be decorated with more algae. Tiarinia cornigera was found to be superior to the co-occurring different majid species Micippa platipes in fighting. When T. cornigera and M. platipes were housed together, the former was decorated with more algae than the latter in the presence of a predator, but in the absence of a predator, the amount of algae was not different. Thus, presence of a predator may motivate intraspecific competition in T. cornigera as well as interspecific competition between T. cornigera and M. platipes for decorating materials.  相似文献   

3.
The predator avoidance behaviours of two littoral mysid species, Neomysis integer (Leach) and Praunus flexuosus (Müller), were studied experimentally. In ingestion experiments, mysids responded to a combination of chemical and visual signals of perch (Perca fluviatilis), but not to each stimulus alone. In the presence of the combined visual and chemical predator signal the swimming activity and choice of habitat (open vs. artificial vegetation, the Charophyte Chara tomentosa or the brown alga Fucus vesiculosus) were also influenced. The two mysid species behaved differently when perceiving predation risk: N. integer reduced swimming activity, whereas P. flexuosus increased their use of the vegetation. The different antipredator strategies of the two mysid species reflect their different lifestyles, N. integer being a swarm-forming species and P. flexuosus living in association with aquatic macrophyte vegetation.Communicated by L. Hagerman, Helsingør  相似文献   

4.
According to the threat-sensitive predator avoidance hypothesis, selection favors prey that accurately assess the degree of threat posed by a predator and adjust their anti-predator response to match the level of risk. Many species of animals rely on chemical cues to estimate predation risk; however, the information content conveyed in these chemical signatures is not well understood. We tested the threat-sensitive predator avoidance hypothesis by determining the specificity of the information conveyed to prey in the chemical signature of their predator. We found that fathead minnows (Pimephales promelas) could determine the degree of threat posed by northern pike (Esox lucius) based on the concentration of chemical cues used. The proportion of minnows that exhibited an anti-predator response when exposed to a predator cue increased as the concentration of the pike cue used increased. More surprisingly, the prey could also distinguish large pike from small pike based on their odor alone. The minnows responded more intensely to cues of small pike than to cues of large pike. In this predator–prey system small pike likely represent a greater threat than large pike.Communicated by A. Mathis  相似文献   

5.
There is increasing evidence that populations may not be well adapted to their local environments, and as a result, recent interest has focused on understanding factors that constrain adaptive evolution. This study presents data suggesting gene flow may constrain the ability of larvae of the streamside salamander Ambystoma barbouri to avoid predation by fish via escape behavior and life history tactics. Streamside salamander larvae face conflicting selection pressures in different streams. Some streams are ephemeral, where larvae should be active to feed, grow, and reach metamorphosis before stream drying. Other streams contain predatory fish, where larvae should be generally inactive to avoid predation. Previous work has shown that streamside salamander larvae exhibit ineffective antipredator behavior by having inappropriately high activity levels with fish, resulting in high predation in laboratory and field experiments. This study investigated the possibility that gene flow from larvae in ephemeral habitats may reduce the escape performance of larvae from populations with fish and alter their life history characteristics to increase their susceptibility to fish predation. I assayed escape behavior (speed, acceleration, and duration of escape) and life history characteristics (hatching date, size, stage) associated with predator avoidance among laboratory-reared larvae from four populations. As predicted, two populations (one with fish and the other fishless and ephemeral) connected by gene flow were not significantly different in almost all assays. In contrast, larvae from an isolated population with fish had significantly stronger escape behaviors and delayed hatching than both an isolated population that lacked a history of fish co-occurrence and the population with fish but gene flow from a fishless population. These results support theory suggesting that gene flow can constrain adaptive evolution. Received: 22 February 1999 / Received in revised form: 4 April 1999 / Accepted: 26 April 1999  相似文献   

6.
The invasive red alga Gracilaria vermiculophylla has quickly spread across Europe, but it is unclear whether its success is based on a high tolerance to variations in environmental conditions or to the absence of native grazers that feed on this alga. We tested whether native invertebrate grazers prefer native algae to G. vermiculophylla. Feeding preferences of three common herbivores were quantified when offered G. vermiculophylla and native Fucus vesiculosus, Ceramium virgatum, and Ulva intestinalis in no-, two- and multiple-choice trials. Herbivore growth was measured when fed each of the algae separately. Grazers consumed G. vermiculophylla in no-choice trials, but avoided generally this alga when having a choice. U. intestinalis was always preferred over G. vermiculophylla, and grazers fed with U. intestinalis grew faster than those fed with G. vermiculophylla. We conclude that grazers avoid G. vermiculophylla to most native algae, which may benefit G. vermiculophylla in northern European estuaries.  相似文献   

7.
The supposition that prey animals respond to a predator with an intensity that matches the risk posed by the predator is known as the threat-sensitive predator avoidance hypothesis. Many studies have provided support for this hypothesis; yet, few studies have attempted to determine how such abilities are acquired by prey species. In this study, we investigated whether fathead minnows (Pimephales promelas) could learn to recognize an unknown predator (northern pike, Esox lucius) in such a way that they could match the intensity of their antipredator response with the threat posed by the predator. We exposed pike-naïve minnows to conspecific alarm cues paired with either a high or low concentration of pike odor. The following day, both groups were tested for a response to either high or low concentration of pike odor alone. We found that minnows conditioned with alarm cues paired with a given concentration of pike odor subsequently responded with a higher intensity to higher concentrations of pike odor, and with a lower intensity to lower concentrations of pike odor. These results demonstrate that during a single conditioning trial, minnows learn the identity of the predator in a threat-sensitive manner. Minnows use predator odor concentrations that they experience in subsequent interactions to adjust the intensity of their antipredator behavior.  相似文献   

8.
Mesograzers are thought to play a critical role in seagrass beds by preventing overgrowth of ephemeral algae. On the Swedish west coast, eelgrass Zostera marina has decreased in recent decades as a result of eutrophication and increased growth of macroalgal mats (mainly filamentous Ulva spp. and Ectocarpales), with no indication of grazer control of the algae. The aim of this study was to investigate the ability of the amphipod Gammarus locusta to control algal blooms during nutrient-enriched and ambient conditions, using a combination of laboratory, field and model studies. Laboratory experiments demonstrated that juvenile and adult G. locusta could consume both Ulva spp. and Ectocarpales, but that consumption of Ulva spp. was significantly higher. Cannibalism was common in individual treatments involving multiple size-classes of G. locusta, but only large, male gammarids consumed smaller juveniles in the presence of Ulva spp. as an alternative food source. However, no negative effects of cannibalism were found on total grazing impact. A model using size-specific grazing rates and growth rates of G. locusta and of Ulva spp. suggests that approximately 62 young juvenile, or 27 adult G. locusta are needed per gram DW of Ulva spp. to control the algal growth during ambient nutrient conditions, and approximately 2.6 times as many gammarids during enhanced nutrient conditions. On the Swedish west coast, densities and mean sizes of G. locusta in eelgrass beds are below these critical values, suggesting that the gammarids will not be able to control the growth of the filamentous macroalgae. However, in the field cage experiment, immigration of juveniles and reproduction of encaged adult G. locusta resulted in unexpectedly high densities of G. locusta (>4,000 individual m−2), and very low biomass of Ulva spp. in both ambient and nutrient-enriched treatments. Although the high numbers of juveniles in all cages precluded any significant treatment effects, this suggests that in the absent of predators, the population of G. locusta can grow significantly and control the biomass of Ulva spp. Furthermore, low grazing of Ectocarpales in the laboratory and high biomass of these filamentous brown algae in the field indicate a preference for the more palatable green algae Ulva spp. This study indicates that the high grazing capacity of G. locusta, in combination with high reproduction and growth rates, would allow the amphipod to play a key role in Z. marina ecosystems by controlling destructive blooms of filamentous green algae. However, high predation pressure appears to prevent large populations of G. locusta in eelgrass beds on the Swedish west coast today.  相似文献   

9.
Behaviors have evolved in response to various selection pressures over evolutionary time. However, not all behaviors are adaptive. Some presumably “ancient” behaviors, persistent for millions of years, may be detrimental in the face of novel selection pressures in modern times. These pressures include a multitude of emerging infectious diseases which may be stimulated by environmental changes. We examined how a globally emerging amphibian pathogen, Batrachochytrium dendrobatidis (BD), affected two key evolutionarily persistent behaviors displayed by amphibian larvae: aggregation and thermoregulation. Larval aggregation behavior is often essential for foraging, thermoregulation, and antipredator defense, but varies among species. Thermoregulatory behavior speeds larval development in ephemeral habitats. Specifically, we examined whether aggregation and thermoregulatory behaviors changed when exposed to the BD pathogen in two species (Bufo boreas and Rana cascadae) whose larvae aggregate in nature. In laboratory choice tests, larvae of neither species avoided infected conspecifics. BD-exposed B. boreas larvae aggregated, while unexposed R. cascadae larvae associated more frequently with BD-exposed conspecifics. There was no evidence of behavioral fever or altered thermoregulation in larvae of four species we examined (Pseudacris regilla, Rana aurora, B. boreas, R. cascadae). The absence of behavioral fever may suggest an inability of the larvae of some host species to mediate infection risk by this pathogen. Thermoregulatory behaviors may exhibit a high degree of evolutionary inertia in amphibian hosts because they are linked with host physiology and developmental rates, while altered aggregation behaviors could potentially elevate pathogen transmission rates, leading to increased infection risk in social amphibian species.  相似文献   

10.
The influence of predation risk and food deprivation on the behavior and activity of juvenile American lobsters, Homarus americanus Milne Edwards, was examined in single and paired individuals in laboratory experiments performed during 1988 and in the winter of 1991/92. In the presence of a predator (the tautog Tautoga onitis Linnaeus) restrained behind a barrier, single lobsters significantly reduced the time spent feeding at night, consumed fewer mussels, and quickly brought them back to shelter. Single lobsters did not forage during the day in any treatment. If deprived of food for 60 h, they consumed more mussels and spent more time walking than recently fed (12-h food-deprived) lobsters. Paired lobsters did forage during the day in the presence of a predator. The smaller lobsters (subdominant) in the pairs foraged for a longer time in the presence than in the absence of a predator and significantly longer than single individuals. Shelter occupancy was significantly shorter in single, recently fed lobsters in the presence of a predator compared to time spent sheltering in its absence. Among food-deprived lobsters, paired individuals spent a significantly shorter time within the shelter than single lobsters in the absence of a predator. Larger (dominant) lobsters, however, spent more time than subdominant lobsters within the shelter during all periods of the day. Without a predator, paired lobsters spent significantly more time than single ones in shelter-related activities. Under predation risk, subdominant lobsters concentrated shelter-building time during the day and built a higher percent of alternative shelters than either single or dominant lobsters. In the absence of a predator, paired lobsters walked in the open area for a significantly longer time than single ones in the absence of a predator. This apparently was associated with fighting between dominant and subdominant lobsters and the attempts of the larger lobster to drive the smaller one from its shelter. During the day, lobsters fought for a significantly longer time in the presence than in the absence of a predator. When the tautog was not constrained, mortality rate was similar in both single and paired lobsters. Mortality rate among subdominant lobsters, however, was seven times higher than among dominant lobsters. We suggest that the risk of predation interferes with the ability of single juvenile lobsters to acquire and consume food. They appear to trade off energetic consideration against risk of predation when foraging away from the shelter. The introduction of a conspecific competitor to the system may further increase risk (of the subdominant) to the predator. Intraspecific interactions tend to increase the risk of predation to smaller lobsters but increase the survival rate among larger lobsters. Received: 6 February 1995 / Accepted: 2 September 1997  相似文献   

11.
Habitat-forming, ecosystem engineer species are common in most marine systems. Still, much uncertainty exists about how individual and population-level traits of these species contribute to ecosystem processes and how engineering species jointly affect biodiversity. In this manipulative field experiment, we examined how biodiversity in marginal blue mussel beds is affected by blue mussel (1) body size, density and patch context and (2) presence of fucoid and algal structures. In the study area, bladder-wrack (Fucus vesiculosus), filamentous algae and blue mussels (Mytilus edulis) coexist at shallow depths in a variety of patch configurations and offer complex habitats with a high variability of resources. We hypothesized that complexity in terms of mussel bed structure and algal presence determines species composition and abundance. Results from the experiment were compared with macrofaunal communities found in natural populations of both engineering species. Results show that the physical structure and blue mussel patch context are important determinants for species composition and abundance. Results further show that the presence of algal structures positively affects diversity in blue mussel habitats due to increased surface availability and complexity that these algae offer. This study shows that blue mussel beds at the very margin of their distribution have an indisputable function for promoting and maintaining biodiversity and suggest that facilitative effects of habitat-modifying species are important on Baltic Sea rocky shores with fundamental importance to community structure.  相似文献   

12.
Antlion larvae are sand-dwelling insect predators, which ambush small arthropod prey while buried in the sand. In some species, the larvae construct conical pits and are considered as sit-and-wait predators which seldom relocate while in other species, they ambush prey without a pit but change their ambush site much more frequently (i.e., sit-and-pursue predators). The ability of antlion larvae to evade some of their predators which hunt them on the sand surface is strongly constrained by the degree of sand stabilization or by sand depth. We studied the effect of predator presence, predator type (active predatory beetle vs. sit-and-pursue wolf spider), and sand depth (shallow vs. deep sand) on the behavioral response of the pit building Myrmeleon hyalinus larvae and the sit-and-pursue Lopezus fedtschenkoi larvae. Predator presence had a negative effect on both antlion species activity. The sit-and-wait M. hyalinus larvae showed reduced pit-building activity, whereas the sit-and-pursue L. fedtschenkoi larvae decreased relocation activity. The proportion of relocating M. hyalinus was negatively affected by sand depth, whereas L. fedtschenkoi was negatively affected also by the predator type. Specifically, the proportion of individual L. fedtschenkoi that relocated in deeper sand was lower when facing the active predator rather than the sit-and-pursue predator. The proportion of M. hyalinus which constructed pits decreased in the presence of a predator, but this pattern was stronger when exposed to the active predator. We suggest that these differences between the two antlion species are strongly linked to their distinct foraging modes and to the foraging mode of their predators. Reut Loria and Inon Scharf contributed equally to the paper.  相似文献   

13.
Eggs of Aplysia oculifera (Adams and Reeve, 1850) were incubated in the laboratory. They hatched 8 to 9 d after spawning. Shell length (SL) of the hatched larvae was 102±2 m. Larvae were fed on the unicellular algae Isochrysis galbana in a concentration of 104 cell ml-1, and after 45 to 60 d grew to a maximum SL of 385±11 m. Larvae survived up to 330 d. A total of 12 species of algae from the natural habitat of A. oculifera were examined as metamorphosis inducers. Red algae Dasia sp., Jania sp., Hypnea sp. and Liagora sp. induced metamorphosis in 66.7±21.2, 28.3±17.7, 26.0±18.5 and 4.0±8.0% of the larvae, respectively. Green algae Enteromorpha intestinalis and Ulva sp. induced metamorphosis in 37.0±11.0 and 9.0±10.4% of the larvae, respectively. Cladophora sp. and Codium dichotomum, and the brown algae Padina pavonia, Colpomenia sinuosa, Hydroclathrus clathratus and Cystoseira sp. did not induce metamorphosis. There was no significant difference in the rate of metamorphosis between young (2 to 4 mo) and old (6 to 8 mo) larvae. Postmetamorphic juveniles grew and developed only when fed with E. intestinalis. They grew to a body length of>8 mm in 50 d. Postmetamorphic juveniles did not survive on other algae. The longevity of the planktonic A. oculifera larvae supports the hypothesis that the larvae can exist in the plankton and survive for several months until the next recruitment. The advantage of non-specificity in metamorphosis induction is discussed.  相似文献   

14.
Capture success of many predator species has been shown to decrease with increasing prey group size and it is therefore suggested that predators should choose to attack stragglers and/or small groups. Predator choice in the laboratory has shown mixed results with some species preferentially attacking large groups and others preferring to attack stragglers over groups. Such predator choices have not been tested in the field. In our study we presented a binary choice between a shoal of guppies and a single guppy to predators in pools in the Arima river, Trinidad. We observed attacks in 11 different pools from a total of 53 predators (20 acara cichlids, Aequidens pulcher, 32 pike cichlids, Crenicichla frenata, and one wolf-fish, Hoplias malabaricus) and found that all predators showed a strong preference for the shoal of guppies in terms of both first choice and total number of attacks. We discuss the implications of these preferences with regards to predator–prey interactions.  相似文献   

15.
The habitat experienced during early life-history stages can determine the number and quality of individuals that recruit to adult populations. In a field experiment, biogenic habitat complexity was manipulated (presence or absence of foliose macroalgae) at two depths (2–3 m and 5–6 m) and the habitat-dependent effects on recruitment of the black foot abalone (Haliotis iris) were examined at three field sites along the south coast of Wellington, New Zealand (41°20′S, 174°47′E), between July and November 2005. Recruit density (<5 weeks post-settlement) was measured on cobbles covered with crustose coralline algae. Habitats of low complexity (barrens treatments) had consistently greater densities of recruits than habitats of high complexity (algae treatments). However, recruits in algae habitats were larger, and for deep habitats, there was greater survival in algae habitats compared with barrens habitats. While depth had no significant effect on early recruit (<2 weeks post-settlement) density, late recruit (<5 weeks post-settlement) density was greater in shallow habitats, and so it seems recruit survival was greater in shallow habitats. In this experiment, algal habitat complexity had strong effects on early recruit abundance, but habitat-dependent variations in recruit growth and survival may modify initial patterns of abundance and determine recruitment to adult abalone populations.  相似文献   

16.
Summary. Many aquatic prey are known to use chemical alarm cues to assess their risk of predation. In fishes, such alarm cues can be released either through damage of the epidermis during a predatory attack (capture-released) or through release from the predator feces (diet-released). In our study, we compared the importance of capture- versus diet-released alarm cues in risk assessment by fathead minnows (Pimephales promelas) that were na?ve to fish predators. We utilized two different fish predators: a specialized piscivore, the northern pike (Esox lucius) and a generalist predator, the brook trout (Salvelinus fontinalis). Handling time of pike consuming minnows was much shorter than for trout consuming minnows, likely resulting in less epidermal damage to the minnows during attacks by pike. In accordance with this, minnows showed a less intense antipredator response to capture-released cues from pike than capture-released cues from trout. This represents a paradox in risk assessment for the minnows as they respond to the specialized piscivore, the more dangerous predator, with a less intense antipredator response. In contrast, the minnows showed a stronger antipredator response to the specialized piscivore than to the generalist when given diet cues. This work highlights the need for researchers to carefully consider the nature of the information available to prey in risk assessment.  相似文献   

17.
The species composition of macrofauna associated with floating seaweed rafts is highly variable and influenced by many factors like spatial and temporal variation, period since detachment and probably also the seaweed species. The presence of seaweed preferences was assessed by a combination of in situ seaweed samplings and multiple-choice aquarium experiments in a controlled environment, using the seaweed-associated grazing organisms Idotea baltica and Gammarus crinicornis. Results from the sampling data confirm that the seaweed composition influences macrofaunal species composition and abundance: samples dominated by Sargassum muticum displayed higher densities but lower diversities compared to samples dominated by Ascophyllum nodosum and Fucus vesiculosus. Seaweed preference was also apparent from the multiple-choice experiments, but did not exactly match the results of the community analysis: (1) I. baltica had high densities in seaweed samples (SWS) dominated by F. vesiculosus and A. nodosum, while in the experiments, this isopod was most frequently associated with Enteromorpha sp. and F. vesiculosus, and fed mostly on S. muticum, A. nodosum and Enteromorpha sp.; (2) G. crinicornis had high densities in SWS dominated by F. vesiculosus, while in the experiments, this amphipod was most frequently associated with S. muticum, but fed most on A. nodosum and F. vesiculosus. It is clear from the laboratory experiments that preference for habitat (shelter) and food can differ among seaweed species. However, food and habitat preferences are hard to assess because grazer preference may change if choices are increased or decreased, if different sizes of grazers are used, or if predators or other grazers are added to the experiments. The effects of seaweed composition may also be blurred due to the obligate opportunistic nature of a lot of the associated macrofaunal species.  相似文献   

18.
Grazing rates of the isopod Idotea baltica on Fucus evanescens and F. vesiculosus (Phaeophyta) were quantified in laboratory feeding preference experiments. Fucus species were offered alone (no-choice) or simultaneously (choice). In three of four no-choice experiments and in all four choice experiments, I. baltica significantly preferred F. vesiculosus to F. evanescens. F. evanescens recently immigrated into Kiel Fjord and has increased in abundance since 1990. One possible reason for the competitive success of this species may be that, compared to F. vesiculosus, it is less preferred by I. baltica, the most abundant mesograzer at the study site.  相似文献   

19.
Surfaces from the habitat of adult Haliotis rubra were tested as inducers of larval settlement to determine the cues that larvae may respond to in the field. Settlement was high on the green algal species Ulva australis and Ulva compressa (Chlorophyta), the articulated coralline algae Amphiroa anceps and Corallina officinalis, and encrusting coralline algae (Rhodophyta). Biofilmed abiotic surfaces such as rocks, sand and shells did not induce settlement. Ulvella lens was also included as a control. Treatment of U. australis, A. anceps and C. officinalis with antibiotics to reduce bacterial films on the surface did not reduce the settlement response of H. rubra larvae. Similarly, treatment of these species and encrusting coralline algae with germanium dioxide to reduce diatom growth did not significantly reduce larval settlement. These results suggest that macroalgae, particularly green algal species, may play an important role in the recruitment of H. rubra larvae in the field and can be used to induce larval settlement in hatchery culture.  相似文献   

20.
Avian escape strategy is highly dependent on the ability to fly, and the success rate of raptor attacks is reduced if the prey gets fully airborne. Therefore, when escaping from predator attacks, the initial take-off is crucial and a rapid take-off, high velocity, and high angle of ascent maximize the chance of survival. However, due to the laws of gravity, birds face a trade-off between maximizing its linear acceleration and maximizing its rate of climb when taking off. The optimal policy between velocity and angle of ascent when a bird escapes from an attacking predator might depend on the detailed nature of the predator’s attack, the proximity to cover, and the presence of conspecifics. Many small birds rely on a quick dash to protective cover. In this study, we examine how the availability of protective cover affects take-off strategy in birds. Male great tits (Parus major) were subjected to a surprise attack by a model predator either in the presence or absence of protective cover. When attacked by the predator, great tits took off and perched in the cover when it was available. Birds subjected to the predator attack in the absence of cover took off in 10° higher angle of ascent and flew faster in the start of the take-off, compared to birds that took off in the presence of cover. Thus, this study for the first time shows that a bird do trade off speed with angle of ascent in an adaptive way, depending on the presence of protective cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号