首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water is scarce in Mediterranean countries: cities are crowded with increasing demand; food is produced with large amounts of water; ecosystems demand more water that is often available; drought affects all. As climate change impacts become more noticeable and costlier, some current water management strategies will not be useful. According to the findings of CIRCE, the areas with limited water resources will increase in the coming decades with major consequences for the way we produce food and we protect ecosystems. Based on these projections this paper discusses water policy priorities for climate change adaptation in the Mediterranean. We first summarise the main challenges to water resources in Mediterranean countries and outline the risks and opportunities for water under climate change based on previous studies. Recognising the difficulty to go from precipitation to water policy, we then present a framework to evaluate water availability in response to natural and management conditions, with an example of application in the Ebro basin that exemplifies other Mediterranean areas. Then we evaluate adaptive capacity to understand the ability of Mediterranean countries to face, respond and recover from climate change impacts on water resources. Social and economic factors are key drivers of inequality in the adaptive capacity across the region. Based on the assessment of impacts and adaptive capacity we suggest thresholds for water policy to respond to climate change and link water scarcity indicators to relevant potential adaptation strategies. Our results suggest the need to further prioritise socially and economically sensitive policies.  相似文献   

2.
Unmitigated anthropogenic climate change is set to exacerbate current stresses on water resources management and creates the need to develop strategies to face climate change impacts on water resources, especially in the long term. Insufficient information on possible impacts on water availability limits the organization and promotion of efforts to adapt and improve the resilience and efficiency of water systems. To document the potential impacts of climate change in the region of Mendoza, Argentina, we perform a hydrological modeling of the Mendoza River watershed using a SWAT model and project climate change scenarios to observe hydrological changes. The results show the impact of higher temperature on glaciers as river flow increases due to glacier melting; at the same time, runoff decreases as precipitation is reduced. Furthermore, the runoff timing is shifted and an earlier melting becomes more important in more pronounced climate change scenarios. Scenarios show a reduction in water availability that ranges between 1 and 10%. An additional scenario under stronger climate change conditions without glaciers data shows a reduction of the river flow by up to 11.8%. This scenario would correspond to a future situation in which glaciers have completely melted. These situations would imply a reduction in the water availability and the possibility of future unsatisfied water uses, in particular for irrigation, which received most of the available water in Mendoza, on which agricultural activities and regional economy depends.  相似文献   

3.
Ecosystem services (ESs) provide information on the tendency of ecosystems to reach and form a state of equilibrium. The process of ES changes is important in order to identify the climate change-related causes that occur regionally to globally. ES-based management plays an important role in mitigation strategies for the negative impact of global climate change on ecosystem. Therefore, it is necessary to evaluate spatial characteristics and relationships among these multiple services from different spatial scales which could aid in multiple ES sustainable development from local to global scales. In this study, we developed a framework for analyzing the spatial characteristics and interactive relationships of multiple ESs. We analyzed the spatial distributions of six hydrological ESs that are important in the northernmost part of Japan (Teshio River watershed) by using hydrology and nutrient model (Soil and Water Assessment Tool, SWAT) under baseline climate conditions and climate change derived from the global circulation model (GCM). We then explored the spatial characteristic scales of ESs by multiscale analysis (lacunarity estimation) to reveal provision flow and spatial distribution characteristics for hydrological ESs. We observed a strong relationship between the spatial characteristics of land uses and ES provision. The spatial characteristics of individual hydrological ESs were totally different and had different spatial homogeneity and cluster (indicated by initial lacunarity index and lacunarity dimension). The results also showed trade-offs between inorganic nutrient retention (provision ESs) and organic nutrient and sediment retentions (regulating ESs), and synergies between organic nutrient retention and sediment retention under all climate change scenarios. The different stakeholders will take different mitigation programs (e.g., establishing riparian vegetation, planning nutrient management practices, and integrating climate change model into systematic conservation planning of ESs) to avoid negative impacts of climate change on ESs. Application of this proposed framework to study the spatial characteristics and relationships of hydrological ESs under climate change could provide understanding on the impact of climate change on ES changes and solutions to mitigate strategies to cope with those changes in the future.  相似文献   

4.
The water cycle, a fundamental component of climate, is likely to be altered in important ways by climate change. Climate change will most likely worsen the already existing water related problems. Then the question is how should policy makers respond to this dilemma. Climate change mitigation, through greenhouse gas (GHG) emissions reduction and sequestration is not a sufficient response. Adaptation will also need to feature as a response strategy. Mitigation and adaptation need to be viewed as complementary responses to climate change. Complementarity between adaptation and mitigation in the water sector will be addressed in this paper. The paper will also outline the main impacts of climate change on water resources and identify those areas that are most dependent and vulnerable to hydrological systems (e.g., hydroelectric systems, irrigation, agriculture) and any changes thereof resulting from climate change. It will aim to assess the impact of water demand and water use, with a view to identifying the main relationships between mitigation and adaptation in the water sector and the means through which individual mitigation and adaptation actions can potentially interact with each other for the benefit of the water sector as a whole. It will also explore the implications of climate change on the management of water resources. Adaptation and mitigation options would be considered in the context of their socio-economic and environmental impacts and their contribution to sustainable development. A brief evaluation of how this information can be directly used for planning purpose will also be presented.
Luis J. MataEmail:
  相似文献   

5.
This paper reviews the possible future situation of the Rhone River in the Swiss part of its catchment. Physical processes in the Alps govern the behaviour of the Rhone from its source (Rhone Glacier) to the Lake of Geneva, and substantial changes are expected to occur in the amount and seasonality of precipitation, and in the response of snow and glaciers to a warming climate. As a result, discharge in the alpine part of the Rhone River is likely to undergo an increase in winter and early spring, but strongly decreases from late spring to late autumn. These changes in water regimes will certainly be accompanied by more frequent geomorphic hazards, related to increases in heavy precipitation events and the melting of permanently frozen grounds. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, and agriculture, while shifts in extreme events will have an impact on the vulnerability of infrastructure and a range of economic sectors and services. Projections of the future course of events can help in advance planning and decision making in order to alleviate some of the more negative consequences of climate and hydrological impacts on key economic sectors in the region. This paper will thus discuss issues related to current and future water governance in the region, whether water-related policies are sufficiently robust today to cope with what may be rapid changes in water availability and water use in coming decades, and to resolve possible rivalries between economic sectors that may be increasingly confronted with problems of water availability at critical times of the year.  相似文献   

6.
Agriculture consumes more than two-thirds of global fresh water out of which 90 % is used by developing countries. Freshwater consumption worldwide is expected to rise another 25 %by 2030 due to increase in population from 6.6 billion currently to about 8 billion by 2030 and over 9 billion by 2050. Worldwide climate change and variability are affecting water resources and agricultural production and in India Ganga Plain region is one of them. Hydroclimatic changes are very prominent in all the regions of Ganga Plain. Climate change and variability impacts are further drying the semi-arid areas and may cause serious problem of water and food scarcity for about 250 million people of the area. About 80 million ha out of total 141 million ha net cultivated area of India is rainfed, which contributes approximately 44 % of total food production has been severely affected by climate change. Further changing climatic conditions are causing prominent hydrological variations like change in drainage density, river morphology (tectonic control) & geometry, water quality and precipitation. Majority of the river channels seen today in the Ganga Plain has migrated from their historic positions. Large scale changes in land use and land cover pattern, cropping pattern, drainage pattern and over exploitation of water resources are modifying the hydrological cycle in Ganga basin. The frequency of floods and drought and its intensity has increased manifold. Ganga Plain rivers has changed their course with time and the regional hydrological conditions shows full control over the rates and processes by which environments geomorphically evolve. Approximately 47 % of total irrigated area of the country is located in Ganga Plain, which is severely affected by changing climatic conditions. In long run climate change will affect the quantity and quality of the crops and the crop yield is going to be down. This will increase the already high food inflation in the country. The warmer atmospheric temperatures and drought conditions will increase soil salinization, desertification and drying-up of aquifer, while flooding conditions will escalate soil erosion, soil degradation and sedimentation. The aim of this study is to understand the impact of different hydrological changes due to climatic conditions and come up with easily and economically feasible solutions effective in addressing the problem of water and food scarcity in future.  相似文献   

7.
地表径流的变化受气候变化和人类活动的双重驱动力作用,定量评估气候变化及人类活动对地表径流变化的影响对水资源管理具有重大意义。论文以水文循环过程为主线,分过程阐述气候变化及人类活动影响地表径流发生变化的机制机理,对各种量化二者对地表径流变化贡献率的方法进行比较,然后分析全球部分流域气候变化和人类活动对地表径流变化影响的差异。研究结果表明:1)气候变化和人类活动参与水文循环的各个过程之中,不同水文过程中气候变化和人类活动影响地表径流变化的途径不同;2)不同量化方法的适用范围和条件不同,不同方法对同一流域的研究结果可能不一致;3)全球不同流域间气候变化和人类活动对地表径流变化贡献率存在明显区域差异。现阶段,综合多种突变检验方法有利于提高识别地表径流突变点的准确率;消除干扰因素(如气象水文等数据选取、模型方法参数设置和方法本身不确定性)有利于提高同一流域不同量化方法评估结果的一致性;如何更好地耦合基于物理的水文模型方法和基于数学的经验统计方法来量化二者对地表径流变化的贡献率是未来研究的重点。  相似文献   

8.
The Mediterranean and neighboring countries are already experiencing a broad range of natural and man-made threats to water security. According to climate projections, the region is at risk due to its pronounced susceptibility to changes in the hydrological budget and extremes. Such changes are expected to have strong impacts on the management of water resources and on key strategic sectors of regional economies. Related developments have an increased capacity to exacerbate tensions, and even intra- and inter-state conflict among social, political, ecological and economic actors. Thus, effective adaptation and prevention policy measures call for multi-disciplinary analysis and action.This review paper presents the current state-of-the-art on research related to climate change impacts upon water resources and security from an ecological, economic and social angle. It provides perspectives for current and upcoming research needs and describes the challenges and potential of integrating and clustering multi-disciplinary research interests in complex and interwoven human-environment systems and its contribution to the upcoming 5th assessment report of the IPCC.  相似文献   

9.
Current trends in Mediterranean agriculture reveal differences between the Northern and Southern Mediterranean countries as related to population growth, land and water use, and food supply and demand. The changes in temperature and precipitation predicted by general circulation models for the Mediterranean region will affect water availability and resource management, critically shaping the patterns of future crop production. Three companion papers analyze in detail future impacts of predicted climate change on wheat (Triticum aestivum L.) and maize (Zea mays L.) production in Spain, Greece, and Egypt, and test farm- level adaptation strategies such as early planting and cultivar change with the aid of dynamic crop models. Strategies to improve the assessment of the potential effects of future climate change on agricultural production are discussed.  相似文献   

10.
Flood damages have exhibited a rapid upward trend, both globally and in Europe, faster than population and economic growth. Hence, vigorous attempts of attribution of changes have been made. Flood risk and vulnerability tend to change over many areas, due to a range of climatic and nonclimatic impacts whose relative importance is site-specific. Flooding is a complex phenomenon and there are several generating mechanisms, among others intense and/or long-lasting precipitation, snowmelt, ice jam. Projected climate-driven changes in future flood frequency are complex, depending on the generating mechanism, e.g., increasing flood magnitudes where floods result of heavy rainfall and possibly decreasing magnitudes where floods are generated by spring snowmelt. Climate change is likely to cause an increase of the risk of riverine flooding across much of Europe. Projections of flood hazard in Europe based on climatic and hydrological models, reviewed in this paper, illustrate possible changes of recurrence of a 100-year flood (with probability of exceedance being 1-in-100 years) in Europe. What used to be a 100-year flood in the control period is projected to become either more frequent or less frequent in the future time horizon of concern. For a large part of the continent, large flooding is projected to become more commonplace in future, warmer climate. Due to the large uncertainty of climate projections, it is currently not possible to devise a scientifically-sound procedure for redefining design floods (e.g. 100-year flood) in order to adjust flood defenses. For the time being, we recommend to adjust design floods using a “climate change factor” approach.  相似文献   

11.
Climate change, water availability and future cereal production in China   总被引:3,自引:0,他引:3  
Climate scenarios from a regional climate model are used to drive crop and water simulation models underpinned by the IPCC A2 and B2 socio-economic development pathways to explore water availability for agriculture in China in the 2020s and 2040s. Various measures of water availability are examined at river basin and provincial scale in relation to agricultural and non-agricultural water demand and current and planned expansions to the area under irrigation. The objectives are to understand the influences of different drivers on future water availability to support China's food production. Hydrological simulations produce moderate to large increases in total water availability in response to increases in future precipitation. Total water demand increases nationally and in most basins, but with a decreasing share for agriculture due primarily to competition from industrial, domestic and municipal sectors. Crop simulations exhibit moderate to large increases in irrigation water demand which is found to be highly sensitive to the characteristics of daily precipitation in the climate scenarios. The impacts of climate change on water availability for agriculture are small compared to the role of socio-economic development.The study identifies significant spatial differences in impacts at the river basin and provincial level. In broad terms water availability for agriculture declines in southern China and remains stable in northern China. The combined impacts of climate change and socio-economic development produce decreases in future irrigation areas, especially the area of irrigated paddy rice. Overall, the results suggest that there will be insufficient water for agriculture in China in the coming decades, due primarily to increases in water demand for non-agricultural uses, which will have significant implications for adaptation strategies and policies for agricultural production and water management.  相似文献   

12.
Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues.  相似文献   

13.
Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by,inter alia, incorporating climate change risk assessment into development planning processes i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (or, better, adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. The urgent issue is the mismatch between the predictions ofglobal climatic change and the need for information onlocal to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. Moreover, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. Unfortunately, climate models cannot yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.  相似文献   

14.
In this study, an integrated simulation-based allocation modeling system (ISAMS) is developed for identifying water resources management strategies in response to climate change. The ISAMS incorporates global climate models (GCMs), a semi-distributed land use-based runoff process (SLURP) model, and a multistage interval-stochastic programming (MISP) approach within a general framework. The ISAMS can not only handle uncertainties expressed as probability distributions and interval values but also reveal climate change impacts on water resources allocation under different projections of GCMs. The ISAMS is then applied to the Kaidu-kongque watershed with cold arid characteristics in the Tarim River Basin (the largest inland watershed basin in China) for demonstrating its efficiency. Results reveal that different climate change models corresponding to various projections (e.g., precipitation and temperature) would lead to changed water resources allocation patterns. Variations in water availability and demand due to uncertainties could result in different water allocation targets and shortages. A variety of decision alternatives about water allocations adaptive to climate change are generated under combinations of different global climate models and ecological water release plans. These findings indicate that understanding the uncertainties in water resources system, building adaptive methods for generating sustainable water allocation patterns, and taking actions for mitigating water shortage problems are key adaptation strategies responding to climate change.  相似文献   

15.
草原区作为影响我国陆地生态系统碳水循环和生态安全的重点区域,对气候变化和人类活动极为敏感.然而,有关气候变化和人类活动对该区域植被恢复相对贡献的认识尚存分歧.以生态系统净初级生产力(NPP)为评价指标,通过对比MODIS观测的实际NPP和基于Thornthwaite Memorial模型估算的潜在NPP的趋势差异,量化了2000~2020年气候变化和人类活动对我国典型草原区(北方温性草原区和青藏高原高寒草原区)植被恢复的相对作用.结果表明,研究区内93%的草地植被呈恢复趋势,NPP平均增加速率达(以C计)2.12 g·(m2·a)-1(P<0.01),其中,近一半植被恢复区受气候变化和人为活动共同控制,约36%和10%植被恢复区分别受气候变化和人类活动的独立控制;此外,不同草地类型气候变化主导植被恢复的面积占比差异大,主要表现为高寒草地明显高于温性草地,气候条件越干旱,气候主导面积占比越大.人类活动不是北方温性草原区和青藏高原高寒草原区植被恢复的主要原因,但在气候条件恶化地区,人类活动可降低甚至抵消气候变化对植被的负面影响.未来需加强长...  相似文献   

16.
Climate change is increasingly affecting organisms and ecosystems. The amount of research and the number of articles in this field is overwhelming. However, single studies necessarily consider limited aspects. Hence, there is an increasing need for structuring the research approaches and findings in climate change research in order to direct future action in an efficient way towards research gaps and areas of uncertainty. Here, we review the current state of knowledge accumulated over the last 10 years (2003–2012) about impacts of climate change on species and ecosystems. Almost 1,200 articles of the scientific literature listed in the ISI Web of Science are analysed. We explore the geographical distribution of knowledge gain, the studied taxonomic groups, ecosystems and environmental parameters as well as the applied methods. Several knowledge gaps arise. Most of the first authors of the analysed articles are residents of North America, Australia or Europe. A similar pattern is found for the study areas. Vascular plants and therewith forests are the most studied taxonomic group and ecosystem. The use of models to estimate potential impacts of climate change is well established in climate change impact research and is continuously developing. However, there is a lack of empirical data derived from experimental climate change simulations. In a rapidly evolving research landscape, this review aims at providing an overview of the current patterns of knowledge distribution and research demands arising from knowledge gaps and biases. Our results should help to identify future research needs and priorities.  相似文献   

17.
Fires are critical elements in the Earth System, linking climate, humans, and vegetation. With 200–500 Mha burnt annually, fire disturbs a greater area over a wider variety of biomes than any other natural disturbance. Fire ignition, propagation, and impacts depend on the interactions among climate, vegetation structure, and land use on local to regional scales. Therefore, fires and their effects on terrestrial ecosystems are highly sensitive to global change. Fires can cause dramatic changes in the structure and functioning of ecosystems. They have significant impacts on the atmosphere and biogeochemical cycles. By contributing significantly to greenhouse gas (e.g., with the release of 1.7–4.1 Pg of carbon per year) and aerosol emissions, and modifying surface properties, they affect not only vegetation but also climate. Fires also modify the provision of a variety of ecosystem services such as carbon sequestration, soil fertility, grazing value, biodiversity, and tourism, and can hence trigger land use change. Fires must therefore be included in global and regional assessments of vulnerability to global change. Fundamental understanding of vulnerability of land systems to fire is required to advise management and policy. Assessing regional vulnerabilities resulting from biophysical and human consequences of changed fire regimes under global change scenarios requires an integrated approach. Here we present a generic conceptual framework for such integrated, multidisciplinary studies. The framework is structured around three interacting (partially nested) subsystems whose contribute to vulnerability. The first subsystem describes the controls on fire regimes (exposure). A first feedback subsystem links fire regimes to atmospheric and climate dynamics within the Earth System (sensitivity), while the second feedback subsystem links changes in fire regimes to changes in the provision of ecological services and to their consequences for human systems (adaptability). We then briefly illustrate how the framework can be applied to two regional cases with contrasting ecological and human context: boreal forests of northern America and African savannahs.  相似文献   

18.
Nicaragua is one of the four countries most affected by climate change, and coffee production is expected to vastly shrink in some critical areas. This can have considerable effects on social structure since nearly a third of its working population depend on coffee for a living. Social perceptions of climate change and water pressures are a key issue in the public's acceptance of adaptation measures. Furthermore, the existing risk for crop production is not necessarily correlated with the farmers’ awareness of that threat. This paper focuses on coffee producers’ perception of risk and adaptive capacity for coffee crops in Nicaragua in response to climate change and water availability. We aim to analyze how dependent the producers are on water resources, and if this reliance affects their perception of risk and their expectations with regard to public and private support for dealing with adaptation. A survey of 212 representative farmers of the national population of farms in the country's two most important production areas was conducted for this purpose. We consider socio-economic and biophysical variables to explain the farmers’ perceptions. Our findings show that experience and technical capacity are relevant to the adaptive capacity although smallholders do not always show high concern and their expectations with regard to external support are very low. The paper can be useful to prioritize the measures necessary for a greater level of involvement from stakeholders.  相似文献   

19.
降水和人类活动对松花江径流量变化的贡献率   总被引:5,自引:1,他引:4  
为了估算自然因素和人类活动对松花江流域径流量变化的相对影响程度,采用累积距平、有序聚类等方法,对松花江干流6 个水文站1955-2010 年径流量序列进行了分析,揭示了径流量变化过程中各站都存在3 个突变点及被其分割的4 个变化阶段。应用累积量斜率变化率比较方法,在不考虑蒸散影响时定量估算了不同阶段降水和人类活动对径流量的贡献率。结果表明:与基准期相比,之后三个时期降水对径流量的贡献率约为26%~35%、0.1%~10%和25%~43%,而人类活动对径流量的贡献率分别约为65%~74%、90%~99.9%和57%~75%。可见人类活动是松花江流域径流量变化最主要的影响因素。虽然在国内大多数流域仍在增强,但在松花江流域自1999年以来已明显小于之前两个时期,却仍然高于降水量的影响程度。  相似文献   

20.
土地利用/覆盖变化对气候的反馈作用   总被引:40,自引:3,他引:40  
土地利用与土地覆盖的变化直接反映了引起全球变化的主导因子---人类活动,关于土地利用与土地覆盖变化的研究将有助于加深对全球变化与陆地生态系统相互作用的理解。文中基于地球表面的能量与水分平衡方程,从理论上探讨了土地利用和土地覆盖对于气候的反馈作用,研究表明:①植被对于降水的作用不大,植被的存在有助于减少径流,增加保水能力,对于全球气候变化有减缓作用;②植被对于气候变化的作用是增温还是降温须视具体地点的情况而定;③对于中纬度地区,当下垫面反射率的变化与径流量的变化满足以下关系时:Δf=5Δα×10g/cm·min下垫面变化对于地表温度无影响。这表明在制定全球变化对策时必须因地制宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号