首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
郑骁  王学松  陈光  冯洪燕  汤帅 《环境工程》2019,37(7):119-123
探讨了初始浓度、接触时间、pH、离子强度等因素对针铁矿对去除水溶液中Cd(Ⅱ)的影响。利用X射线粉末衍射仪(XRD)对针铁矿进行表征,并通过批量实验研究了针铁矿对Cd(Ⅱ)吸附动力学和等温吸附机理。结果表明:针铁矿比表面积为82. 36 m~2/g;准二级动力学和Langmuir等温吸附适用于针铁矿对Cd(Ⅱ)的吸附,相关系数分别为0. 9535和0. 9915;当25℃、pH为5时,用Langmuir等温线计算得到其最大吸附量为35. 29 mg/g;针铁矿吸附Cd(Ⅱ)能力随pH增大而增大;随着CaCl_2的浓度增大,针铁矿对Cd(Ⅱ)的吸附量减小,随着MgCl_2的浓度增大,针铁矿对Cd(Ⅱ)的吸附量先减小后上升,总体有抑制作用。  相似文献   

2.
在离体条件下,研究了外生菌根真菌红绒盖牛肝菌(Xerocomus chrysenteron)菌丝对 Cu(Ⅱ)和 Cd(Ⅱ)生物吸附的影响因子,考察了X. chrysenteron菌丝对 Cu(Ⅱ)和 Cd(Ⅱ)的吸附能力、去除率和平衡吸附量在不同初始质量浓度和不同温度下所受影响,并采用Freundlich和Langmuir线性化吸附等温线模型拟合X. chrysenteron菌丝的生物吸附热力学特性. 结果表明:当菌丝的质量浓度为10g/L, 30 ℃时,X. chrysenteron非活性菌丝对 Cu(Ⅱ)和 Cd(Ⅱ)的最佳吸附量分别为47.11和11.72mg/g(以菌丝干质量计);X. chrysenteron非活性菌丝对 Cu(Ⅱ)和 Cd(Ⅱ)的吸附能力、去除率、平衡吸附量均优于活性菌丝;X. chrysenteron菌丝对 Cu(Ⅱ)和 Cd(Ⅱ)的吸附能力随其初始质量浓度的增加而增大,去除率随其初始质量浓度的增大而分别呈指数下降和线性下降;30 ℃时X. chrysenteron菌丝对 Cu(Ⅱ)和 Cd(Ⅱ)的吸附能力、去除率、平衡吸附量均比 25 ℃时大.  相似文献   

3.
采用浸渍焙烧法制备了活性炭负载氧化锰的除镉(Cd(Ⅱ))吸附剂,通过L_9(3~4)正交试验确定最优制备条件如下:浸渍时间7 h,KMnO_4质量分数2.7%,焙烧温度470℃,焙烧时间2.5 h。通过BET、SEM、FTIR、XRD对改性活性炭(MOAC)进行表征,研究了pH值、吸附时间、初始浓度、吸附温度等对Cd(Ⅱ)吸附效果的影响。结果表明:MOAC表面烃基含氧官能团增多,氧化锰以MnO_2的形式负载到其表面;当MOAC的投加量为0.5 g/L,Cd(Ⅱ)的初始浓度为50 mg/L,溶液pH值为6.0,温度为298 K,吸附时间为12 h时,MOAC对Cd(Ⅱ)的吸附量高达84.15 mg/g,吸附过程符合准二级动力学方程和Langmuir等温吸附方程,热力学参数表明该吸附过程为放热、自发的过程。  相似文献   

4.
莫瑜  潘蓉  黄海伟  曹理想  张仁铎 《环境科学》2010,31(7):1566-1574
通过批量实验研究了毛木耳(Auricularia polytricha)子实体和白木耳(Tremella fuciformis)子实体对水溶液中不同浓度的Cd(Ⅱ)、Cu(Ⅱ)、Pb(Ⅱ)、Zn(Ⅱ)的吸附能力和吸附动力学特性.此外,研究了多种离子共存对吸附效果的影响,以及吸附剂在多重金属混合溶液中对各重金属离子的吸附量大小顺序.结果表明,毛木耳子实体对单金属溶液中Cd(Ⅱ)、Cu(Ⅱ)、Pb(Ⅱ)、Zn(Ⅱ)的最大吸附量分别为18.91、18.69、20.33和12.42mg·g-1,最大去除率在实验设置条件下均在85%以上;白木耳子实体对单金属溶液中Cd(Ⅱ)、Cu(Ⅱ)、Pb(Ⅱ)、Zn(Ⅱ)的最大吸附量分别为19.98、20.15、19.16和16.41mg·g-1,最大去除率在实验条件下均在75%以上.在初始浓度分别为10、50和100mg·L-1的溶液中,随初始浓度的增加,菌体对重金属的吸附量增加,但去除率下降.准二阶模型比准一阶模型能更好地描述吸附动力学过程.2种吸附剂对多金属溶液中重金属离子吸附量的大小均呈现Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)的吸附规律,电负性大的金属离子被优先吸附.溶液中其它重金属离子的存在使白木耳子实体对Pb(Ⅱ)的吸附量上升,而使毛木耳子实体对4种离子和白木耳子实体对其它3种离子的吸附量下降.研究发现,毛木耳和白木耳子实体都是潜在的生物吸附剂.  相似文献   

5.
不同热解温度生物炭对 Cd(Ⅱ)的吸附特性   总被引:45,自引:7,他引:38  
以花生壳和中药渣为原料,分别于300、350、400、500、600℃下慢速热解制备生物炭,并表征其物理化学性质.研究不同p H、吸附时间和Cd(Ⅱ)浓度下生物炭对Cd(Ⅱ)的吸附特征.结果表明,随着热解温度的升高,生物炭的碳化程度增加,比表面积增大,含氧官能团数量减少,π共轭芳香结构更加完备,Ca和Mg等无机元素不断富集,矿物溶解性降低,导致了Cd(Ⅱ)在不同热解温度生物炭上吸附能力及机制的差异.随溶液p H的升高(2.0~6.0),生物炭对Cd(Ⅱ)的吸附量逐渐增加.吸附过程可分为快吸附和慢吸附两个阶段,吸附速度受膜扩散、颗粒内扩散和沉淀作用、离子交换等过程的控制.随热解温度的升高,快吸附在生物炭对Cd(Ⅱ)的吸附中所占比例逐渐降低.高温生物炭(≥500℃)中含氧官能团的锐减及难溶晶体矿物的形成降低了其对Cd(Ⅱ)的快吸附速率.沉淀和离子交换可能是低温生物炭(≤400℃)吸附Cd(Ⅱ)的主要机制;高温生物炭(≥500℃)中更完备的π共轭芳香结构增加了Cd-π作用对吸附的贡献,而难溶磷酸盐和碳酸盐的形成则降低了沉淀作用对吸附的贡献.这些研究结果为筛选对Cd(Ⅱ)具有高效去除或固持能力的功能生物炭(designer biochar)提供了重要的理论数据.  相似文献   

6.
霉菌吸附水体中Cr(Ⅵ)Cd(Ⅱ)离子研究   总被引:1,自引:5,他引:1  
采用从活性污泥中筛选的ZYL霉菌,进行吸附水体中Cr(Ⅵ)、Cd(Ⅱ)离子研究。研究结果表明:在Cr(Ⅵ)、Cd(Ⅱ)浓度分别为300mg/L时,菌种生长良好。吸附水体中[Cr(Ⅵ)、Cd(Ⅱ)]的最佳条件是pH=5.0,时间1h,温度为10℃。吸附规律符合Langm uir等温吸附模型,由回归方程得到Cr(Ⅵ)的表观最大吸附量为14m g/g;Cd(Ⅱ)的表观最大吸附量为52m g/g,说明该霉菌可以很好的去除低温水体(地下水)中Cr(Ⅵ)、Cd(Ⅱ)离子。  相似文献   

7.
废啤酒酵母吸附水溶液中Ni(Ⅱ)和Cd(Ⅱ)的性能   总被引:3,自引:2,他引:1  
用废啤酒酵母吸附水溶液中N(iⅡ)和Cd(Ⅱ),考察了溶液pH值、重金属离子浓度、吸附时间和溶液中盐的浓度对吸附效果的影响。结果表明:溶液pH是影响重金属离子吸附的一个重要参数,中性条件利于吸附。废啤酒酵母对N(iⅡ)和Cd(Ⅱ)吸附速率较快,达到吸附平衡约需120min。废啤酒酵母吸附N(iⅡ)和Cd(Ⅱ)的实验数据对Langmuir等温式的拟合情况良好,pH=7时,废啤酒酵母对N(iⅡ)和Cd(Ⅱ)的最大吸附量分别为5.34mg/g和10.17mg/g。溶液中其它盐类物质的存在对重金属离子的吸附会产生较大的影响,pH=3条件下进行解吸附,解吸附率>90%。  相似文献   

8.
以高锰酸钾改性商业椰壳生物炭(MCBC)为吸附剂,探讨了它对Cd(Ⅱ)和Ni(Ⅱ)的去除性能及机制.当初始pH和MCBC投加量分别为5和3.0 g·L-1时,Cd(Ⅱ)和Ni(Ⅱ)的去除率均高于99%.Cd(Ⅱ)和Ni(Ⅱ)的去除更符合准二级动力学模型,表明它们的去除以化学吸附为主;Cd(Ⅱ)和Ni(Ⅱ)去除的控速步骤为快速去除阶段,而该阶段的速率取决于液膜扩散和颗粒内扩散(表面扩散).Cd(Ⅱ)和Ni(Ⅱ)主要通过表面吸附和孔隙填充附着在MCBC上,表面吸附的贡献更大;MCBC对Cd(Ⅱ)和Ni(Ⅱ)的饱和吸附量分别为57.18 mg·g-1和23.29 mg·g-1,约为前驱体(椰壳生物炭)的5.74倍和6.97倍.Cd(Ⅱ)和Ni(Ⅱ)的去除是自发的、吸热的,具有较为明显的化学吸附热力学特征.Cd(Ⅱ)通过离子交换、共沉淀、络合反应和阳离子-π相互作用附着在MCBC上;而Ni(Ⅱ)则是通过离子交换、共沉淀、络合反应和氧化还原反应被MCBC去除;其中,共沉淀和络合作用是Cd(Ⅱ)和Ni(Ⅱ)表面吸附的主要方式,且络合...  相似文献   

9.
为同时去除水溶液中的Cd(Ⅱ)和As(Ⅴ),采用羟基铁柱撑改性获得改性蒙脱石,并深入研究了其吸附性能和吸附机理.同时,采用BET比表面积、SEM、XRD和XPS等手段分析了改性前后蒙脱石的结构特征;采用批实验分别研究了改性蒙脱石对水体中Cd(Ⅱ)和As(Ⅴ)的吸附动力学和热力学特征,并探讨了Cd(Ⅱ)-As(Ⅴ)复合体系中镉、砷相互作用对改性蒙脱石等温吸附镉、砷的影响.结果表明,改性蒙脱石的比表面积较改性前增加了28.2%,XPS测试结果表明改性蒙脱石成功引入羟基铁.改性蒙脱石单一吸附Cd(Ⅱ)和As(Ⅴ)的最优初始pH分别为6.5和5.5,且25℃时分别在10 h和5 h内达到吸附平衡,吸附过程均符合准二级动力学方程;Langmuir等温吸附模型能更好地描述改性蒙脱石对Cd(Ⅱ)的吸附,最大吸附量为21.36 mg·g-1,该吸附过程是离子交换和化学络合共同作用的结果;Freundlich等温吸附模型能更好地解释改性蒙脱石对As(Ⅴ)的吸附,最大吸附量为11.45 mg·g-1,该吸附过程是化学络合作用的结果(改性剂投加量均为2 g·L-1).在Cd(Ⅱ)-As(Ⅴ)复合体系中,镉、砷之间存在相互作用,pH为5.5时,吸附量高于改性蒙脱石对单一Cd(Ⅱ)和As(Ⅴ)的吸附量,分别增加了14.4%和23.7%,表明合成的羟基铁柱撑蒙脱石对镉、砷复合污染农田具有同时去除Cd(Ⅱ)和As(Ⅴ)的修复潜力.  相似文献   

10.
康丽  刘文  刘晓娜  刘宏芳  李一菲 《环境科学》2018,39(7):3212-3221
采用温和水热法合成了负载铌酸盐纳米粒子的钛酸纳米片(Nb-TNS),并应用于水体中重金属离子Cd(Ⅱ)的吸附去除.XRD、TEM和SEM等多种表征证实了新合成的复合材料为未卷曲成管的纳米片状结构.Nb-TNS对Cd(Ⅱ)的吸附机制为Cd(Ⅱ)阳离子与层间Na+的离子交换.Nb-TNS对Cd(Ⅱ)的吸附动力学过程很快,60 min内即可达到吸附平衡,且符合准二级动力学方程.吸附等温线符合Langmuir模型,且对Cd(Ⅱ)的理论最大吸附量高达287.9 mg·g-1.高p H利于Nb-TNS对Cd(Ⅱ)的吸附,原因是带负电的材料表面易于通过静电作用捕集Cd(Ⅱ)阳离子进而发生离子交换,而酸性环境会抑制Cd(Ⅱ)吸附.共存离子Na+和Ca2+抑制Cd(Ⅱ)在Nb-TNS上的吸附,主要因为共存离子与Cd2+竞争吸附位点所致.腐殖酸(HA)对Nb-TNS吸附Cd(Ⅱ)抑制作用较小.经HNO3处理,Cd(Ⅱ)离子易从Nb-TNS上解吸,Na OH再生后,Nb-TNS的-ONa位点恢复.由于Nb-TNS简易的合成方法、对金属阳离子的高效去除效果及可再生性能,在重金属废水修复领域具有很好的应用前景.  相似文献   

11.
锰氧化物改性硅藻土对水中Cd(Ⅱ)的吸附性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以硅藻土精土为基体,用锰氧化物作为改性剂制备了改性硅藻土,采用SEM、FT-IR、XRD、比表面积仪对锰氧化物改性的硅藻土进行表征。通过静态吸附试验考查了吸附剂用量、溶液初始浓度、反应温度、溶液初始pH、反应时间等因素对改性硅藻土吸附模拟废水中Cd(Ⅱ)的影响。结果表明:环境温度为25℃,溶液pH为4,投加量为5 g/L时,改性硅藻土对4 mg/L的Cd(Ⅱ)吸附效果最好,去除率可达到97.5%以上,处理后的废水中ρ(Cd(Ⅱ))<0.1 mg/L,低于GB 8978—1996《污水综合排放标准》中总镉的排放标准。  相似文献   

12.
重金属Pb(Ⅱ)污染原水的应急处理工艺研究   总被引:6,自引:4,他引:2  
采用2种常用混凝剂--聚合硫酸铁(PFS)和聚氯化铝(PACl),以水中Pb(II)浓度突增为背景,研究了混凝剂投加量、目标物初始浓度以及调节pH值和高锰酸钾(KMnO4)预氧化等措施对混凝除Pb(II)效果的影响,同时比较了粉末活性炭(PAC)吸附 混凝和硅藻土吸附 混凝等工艺对Pb(Ⅱ)的去除效果.结果表明,单独投加混凝剂时,投加PFS对Ph(Ⅱ)的去除效果优于投加PACI.2种混凝剂的投加量为10 mg/L时,对Ph(Ⅱ)的去除效果基本达到最好水平,并且Pb(Ⅱ)初始浓度对混凝效果影响最小.在此投加量下调节pH值到9,2种混凝剂对应Pb(Ⅱ)的去除率都在95%以上.KMn04预氧化只在以PACI为混凝剂时对除Pb(Ⅱ)起到一定促进作用.以PFs为混凝剂时,投加10 mg/L的PAC或投加25 mg/L的硅藻土会取得相同的除Pb(Ⅱ)效果,即水中Pb(11)浓度从402 μg/L降至10 μg/L以下;而混凝剂为PACl时,活性炭投加量为20 mg/L或硅藻土投加量为50 mg/L时,水中剩余Ph(Ⅱ)的浓度也可以达标;通过硅藻土与KMnO4联用试验发现,高锰酸钾氧化会削弱硅藻土对Pb(Ⅱ)的吸附作用.综合考虑得出,硅藻土吸附 混凝才是原水应急除Pb(Ⅱ)简单、经济和有效的方法.  相似文献   

13.
以活性炭纤维(Activated Carbon Fiber,ACF)为吸附剂,研究吸附剂投加量、时间、初始溶液pH和重金属浓度等影响因素对二元溶液中Pb(II)和Cd(Ⅱ)去除效果的影响。实验结果表明,ACF适应的pH范围宽(3.0~5.6),吸附平衡时间短(2 min),对Pb(Ⅱ)和Cd(Ⅱ)的吸附容量随溶液pH增加而增大。在溶液pH为5.6,ACF用量为0.004 g/L时,ACF对Pb(Ⅱ)和Cd(Ⅱ)的吸附容量分别为232.4和33.8 mg/g。ACF对Pb(Ⅱ)的吸附满足Freundlich等温吸附模型,对Cd(II)的吸附满足Langmuir等温吸附模型。环境扫描电镜照片显示ACF在吸附铅镉二元溶液后,表面聚集很多细小颗粒物,能量色散X射线光谱仪分析进一步验证颗粒物的主要组成为铅和镉元素,红外光谱分析则表明Pb(Ⅱ)和Cd(Ⅱ)与ACF的表面官能团结合实现了ACF对废水中Pb(Ⅱ)和Cd(Ⅱ)的去除。  相似文献   

14.
为拓展多孔硅酸盐等矿物材料在钝化土壤重金属中的应用,以Na2Si O_3为硅源,制备了二氧化硅多孔材料SBA-15,用透射电镜、X射线衍射、氮气吸附-解吸和红外光谱等手段对其结构进行了表征,并在此基础上,以批试验法研究了SBA-15对Cd(Ⅱ)吸附特征和缝合性能,并通过小青菜盆栽试验法探讨了其对土壤Cd的钝化潜力.结果表明,合成的SBA-15具有规则中孔特征,比表面积507.3 m2·g-1,孔径7.38 nm;体系pH≥7.0时,在100 mg·L~(-1)的Cd(Ⅱ)溶液中SBA-15的最大吸附量可达76.43 mg·g-1,吸附过程可用Langmuir模型描述,增加介质离子强度对Cd(Ⅱ)的吸附具有抑制作用.吸附Cd(Ⅱ)后的SBA-15可以用0.1 mol·L~(-1)HNO_3进行再生,但当向吸附Cd(Ⅱ)的SBA-15中引入Na2Si O_3后,可以通过SBA-15的孔隙缝合有效地固定被吸附的Cd(Ⅱ),从而抑制Cd(Ⅱ)向环境中释放.小青菜盆栽试验表明,SBA-15对Cd(Ⅱ)污染土壤的改良效果明显,能有效地降低土壤有效态Cd(Ⅱ)的含量,促进土壤Cd水溶态和交换态向碳酸盐和铁锰氧化物结合态及残渣态的转化,抑制Cd(Ⅱ)在小青菜体内的积累,增加小青菜产量.研究表明,利用SBA-15的吸附缝合能力以SBA-15和Na2Si O_3配合使用,是进行土壤中Cd修复的有效方法.  相似文献   

15.
以纳米二氧化硅为硅源制备硅改性生物炭,利用吸附动力学、吸附等温线及SEM-EDS、XRD、FTIR、XPS等表征研究硅改性生物炭对水中Cd(Ⅱ)的吸附机理,并定量分析各种吸附机制的贡献率.结果表明,当添加SiO2质量比为0.5%时制备的生物炭(0.5SiBC)吸附Cd(Ⅱ)效果最佳,最大吸附量为132.64 mg·g-1,是未改性生物炭(BC)的1.56倍;0.5SiBC对Cd(Ⅱ)吸附过程符合拟二级动力学和Freundlich模型,其吸附过程属于化学吸附;XRD、FTIR和XPS等结果表明,0.5SiBC吸附Cd(Ⅱ)的机理主要有矿物质沉淀、离子交换作用和络合作用,各种机理贡献率依次为:矿物质沉淀(46.61%)>离子交换(33.79%)>其他机理(18.36%)>络合作用(1.24%);0.5SiBC对Cd(Ⅱ)的离子交换和矿物质沉淀量比BC分别提高133.80%和41.46%,硅改性主要通过提高生物炭的离子交换和矿物质沉淀能力来提高吸附Cd(Ⅱ)的能力.研究表明,硅改性生物炭作为去除水溶液中Cd(Ⅱ)的吸附剂具有较好的...  相似文献   

16.
高硫煤基高比表面积活性炭吸附处理焦化废水的研究   总被引:1,自引:0,他引:1  
采用高硫煤基高比表面积活性炭对焦化废水进行吸附处理,研究了吸附温度、活性炭投加量、吸附时间等工艺条件对处理效果的影响,并对活性碳的再生进行了初步探讨.结果表明,在32℃时,活性炭投加量1g/50 mL,吸附3h后,焦化废水中氨氮去除率为23.4%,苯酚去除率为85.8%,COD去除率可达90%.该活性炭能够进行有限的再生利用.  相似文献   

17.
为有效去除水中Cd(Ⅱ),以TiO2纳米粉和NaOH为原料,调节水热反应温度分别为100、120、150和190℃,制备出了不同形貌的TNs(钛酸盐纳米材料),分别记为TNs-100、TNs-120、TNs-150和TNs-190,并对其形貌、结构、比表面积、化学组成等物理化学性能进行了表征;通过对水中Cd(Ⅱ)的静态吸附试验,考察了TNs对Cd(Ⅱ)的吸附性能.结果表明:随着合成温度的升高,TNs的形貌逐渐从纳米片演变成纳米管,管长逐渐变长,最后变成纳米棒.TNs-100的晶型结构主要是锐钛矿型;随着温度升高,结晶度逐渐增强;TNs-190出现了部分金红石相.TNs-150对Cd(Ⅱ)的吸附能力最强,最大平衡吸附量为254.66 mg/g,最佳吸附pH为5.0.再生的TNs-150对Cd(Ⅱ)循环吸附6次的去除率和解吸率均可达93%以上.TNs-150对Cd(Ⅱ)的吸附过程符合准二阶动力学方程和Langmuir吸附等温模型,吸附机制主要是TNs层间Na+和H+与溶液中Cd(Ⅱ)的离子交换.研究显示,TNs的饱和吸附量均高于同类吸附剂,能有效去除水中Cd(Ⅱ).   相似文献   

18.
以城市污泥为主要原料制备了污泥基活性炭(SAC),考察了其对重金属离子的吸附去除效能和吸附动力学规律.并选择了2种商品活性炭(煤质炭,MAC和椰壳炭,YAC)作为对比,以初始浓度为50mg/L的Cu(II),Pb(II),Cd(II),Cr(VI)4种重金属离子为去除对象,分别进行了3种活性炭的表面理化性质分析及其对4种重金属离子的吸附试验.结果表明,SAC的比表面积和微孔容积仅为YAC和MAC的1/3~1/2,吸附速率也相对较慢,但其对Cu(II),Pb(II),Cr(VI),Cd(II)的平衡吸附量却远大于2种商品活性炭,分别为9.9,8.9,8.2,5.4mg/g,说明SAC表面的高酸性基团含量对重金属离子的吸附起到了关键作用;Langmuir与Freundlich吸附等温模型均能较好地拟合SAC对Cu(II)和Pb(II)的吸附,SAC对Cr(VI)的吸附过程更符合Langmuir模型,而SAC对于Cd(II)的吸附过程用Langmuir与Freundlich两个模型均不能较好地拟合,说明SAC表面缺少能够与Cd(II)发生反应的结合位点.  相似文献   

19.
为提高累托石/污泥生物炭复合材料的吸附特性,在通过混合热解法制备的累托石/污泥生物炭复合材料的基础上,利用氧化还原反应制备得到MnO_2改性的累托石/污泥生物炭复合材料,对改性前后的复合材料进行了表征和吸附特性研究。结果表明:MnO_2改性的累托石/污泥生物炭复合材料的比表面积以及微孔和介孔的数量远高于未改性的复合材料,改性复合材料中的MnO_2是无定形的且材料表面含有丰富的含氧官能团;改性后的复合材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附量远高于未改性的复合材料,其吸附过程受pH值的影响较大;该改性复合材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附动力学和等温线分别符合Elovich模型和Langmuir等温线方程,其吸附热力学分析结果表明该改性复合材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附过程是自发的吸热过程,且混乱度增加。可见,MnO_2改性的累托石/污泥生物炭复合材料是一种具有潜力的重金属吸附剂。  相似文献   

20.
采用氯化铁溶液对活性炭进行改性,制备了氯化铁改性活性炭(Fe-GAC)。采用比表面积测定和孔容分析、扫描电镜分析以及Boehm官能团滴定等方法,对改性前后活性炭的表面理化性质进行表征。以含Cr(VI)废水为处理对象,考察了吸附剂投加量、时间、p H值、初始浓度、反应温度对吸附性能的影响。结果表明:对于浓度为10 mg/L的Cr(VI)溶液,Fe-GAC和GAC的最佳投加量为4 g/L时,去除率分别为98.23%和78.32%,吸附平衡时间均为300 min;在p H值4~10的范围内,吸附剂对Cr(VI)的去除率随着溶液p H值的增大而减少,吸附剂对Cr(VI)的去除率均随着溶液初始浓度的增大而减小。在15℃到35℃范围内,随着温度的增加,吸附剂对水中Cr(VI)的去除率均略有增加,吸附反应属于吸热反应。吸附过程与Langmuir吸附等温线方程及Lagergren准二级动力方程拟合较好,相关系数R2都在0.99以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号