首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study aims to establish denitrification potential of the Northern Arabian Gulf (NAG), as nitrogen critically affects the ocean productivity, obliterates acidity, oxidative capacity and radiative transfer capability of atmosphere. The experimental study was conducted by taking cores from intertidal zones from two different sites in North and South, referred as sites N and S; representing two distinct environmental milieu. The experiment was conducted in controlled laboratory conditions simulating the tidal cycles. Multiple cores were taken and loaded with seawater with different N concentrations, the redox potential was established for each condition. Redox potential was significantly lower at 10?cm depth compared to the surface in all cores (P?<?0.001). The redox potential at surface and at 10?cm depth was significantly lower at site S compared to site N (P?<?0.001; F?=?714.2), suggesting anaerobic sediments at site S. Effects of nitrate spiked seawater on denitrification under nonflooded and flooded conditions at the two sites were also studied. Three-way ANOVA analysis indicated that site, nitrate concentration, and flooding had significant main and interactive effects on the rate of denitrification. The results suggest that under ambient nitrate concentrations (0.03?mg NO3-N?l?1), 6.3?±?2.1?g NO3-N?ha?day can be denitrified by inter-tidal zone sediments. At a nitrate concentration of 1?mg NO3-N?l?1, 92?±?16?g NO3-N?ha?day may be denitrified whilst at a very high nitrate load of 10?mg NO3-N?l?1, the sediments may attain a rate of denitrification close to 404?±?78?g NO3-N?ha?day.  相似文献   

2.
3.
This paper deals with the incident of the excessive use of chlorine and leakage of unused chlorine from an industrial chlorination cistern and the lesson learned.  相似文献   

4.
On-site sanitation has emerged as a preferred mode of sanitation in cities experiencing rapid urbanization due to the high cost involved in off-site sanitation which requires conventional sewerages. However, this practice has put severe stress on groundwater especially its quality. Under the above backdrop, a study has been undertaken to investigate the impact of on-site sanitation on quality of groundwater sources in two mega cities namely Indore and Kolkata which are situated in two different geological settings. The parameters for the studies are distance of groundwater source from place of sanitation, effect of summer and monsoon seasons, local hydro-geological conditions, and physico-chemical parameters. NO3 and fecal coliform concentrations are considered as main indexes of pollution in water. Out of many conclusions which can be made from this studies, one major conclusion is about the influence of on-site sanitation on groundwater quality is minimal in Kolkata, whereas it is significant in Indore. This difference is due to the difference in hydrogeological parameters of these two cities, Kolkata being on alluvium quaternary and Indore being on Deccan trap of Cretaceous to Paleogene age.  相似文献   

5.
Soil carbon redistribution is an important process in the terrestrial carbon cycle. This study describes a new index, soil carbon redistribution (SCR) index, that can be used to assess long-term soil carbon redistribution at a large watershed scale. The new index is based on the theoretical preconditions that soil carbon redistribution is mainly controlled by vegetation type, precipitation, topography/slope, and soil carbon concentration. The Haihe River Basin served as an example for this analysis. The SCR index was calculated, and a GIS-based map shows its spatial patterns. The results suggested that soil carbon was usually prone to being carried away from mountainous regions with natural vegetation, while it was prone to deposition in the plain and plateau regions with cultivated vegetation. The methods in the paper offer a tool that can be used to quantify the potential risk where soil carbon is prone to being carried away and deposited in a large watershed.  相似文献   

6.
This study analyses health damages from particulate pollution and the corresponding social costs. The analyses, which are based on transferring dose–response functions to Norway, is made within an integrated approach, where the economic impacts of the health damages are handled separately from the non‐economic welfare effects. We find that the social costs of health damages in Oslo are significant, and that the non‐economic welfare effects clearly dominate the cost figure.  相似文献   

7.
Current demand analysis methods do not formally cover the case of chronic deficits in quantity or quality of water and sanitation services. These services include drinking water supply (DWS), wastewater and sewage treatment (WST), and municipal solid waste management (MSW). Formal analysis of this case would, at minimum, define the deficit state and evaluate appropriate options for reducing it. This paper proposes for a formal analytical model for municipal sanitation systems (MSS) that operate with deficits in at least one of the constituent services of DWS, WST, or MSW. The model introduces definitions and notation for describing the deficit state for conducting demand analysis on municipal sanitation systems. This model of demand analysis for systems with chronic deficits will hereinafter be referred to as deficit analysis. A case study for Bacoor, Philippines is presented as an example.  相似文献   

8.
The present study aims at identifying the groundwater contamination problems in Bangalore city in India. Groundwater samples from 30 different locations of the industrial area were collected. Analytical techniques as described in the Standard methods for the examination of water and wastewater were adopted for physico-chemical analysis of these samples and the results compared with the Bureau of Indian Standards (BIS) guideline values for potable water in the light of possible health hazards. The investigations reveal that most of the study area is highly contaminated due to the excessive concentrations of one or more water quality parameters such as Nitrates, Total Hardness, Calcium, Magnesium, Total dissolved solids, Sulphates and Fluorides, which have rendered nearly 77% of the water samples tested, non- potable. Discussions held by the authors with the local public as well as the Primary health centre authorities of the area revealed that a lot of people in the area are suffering from severe health problems on using this water. The findings show that there is a clear correlation between the ill health faced by the public and contamination of the said groundwaters.  相似文献   

9.
The response of benthic foraminiferal assemblages to trace element pollution in the marine sediments of the Gulf of Milazzo (north-eastern Sicily) was investigated. Since the 1960s, this coastal area has been a preferred site for the development of two small marinas and a commercial harbour as well as for heavy industry. Forty samples collected in the uppermost 3–4 cm of an undisturbed layer of sediment in the littoral environment were used for this benthic foraminiferal analysis. The enrichment factors (EFs) of selected trace elements (As, Co, Cr, Cu, Mn, Ni, Pb and Zn) were also calculated. Changes both in benthic foraminiferal assemblages and in some trace elements concentrations have provided evidence that the gulf’s littoral zone can be subdivided into three sectors characterised by environmental changes in the marine ecosystem. In the sector unpolluted, close to the Milazzo Cape, foraminiferal assemblages exhibit high values of species richness and foraminiferal density while trace element concentrations and their EFs are very low. Here, the highest densities of Miliolids and epiphytic species are present. On the contrary, in the sector polluted, from the marinas to the crude oil refinery, foraminiferal density and species diversity are low, and assemblages are dominated, albeit with very low densities, by species that tolerate stressed environmental conditions, such as LOFAs, agglutinants and Ammonia spp. Here, the highest trace elements concentrations of Pb, Zn and Cu and related EFs were detected. Eastwards, in the sector moderately polluted, foraminiferal populations are quite poor. They are characterised by low values of species richness and foraminiferal densities, nevertheless trace element concentrations become lower than in the other sectors and their EFs are often below 1. Deformed foraminifera, with percentages up to 7.14 %, were found in all three of the sectors. Differences in benthic foraminiferal assemblages, coupled with results from statistical analysis, indicate that anthropogenic trace element pollution could be considered as one of the most important causes of the modifications of foraminiferal assemblages in the study area.  相似文献   

10.
Noise mapping has been used as an instrument for assessment of environmental noise, helping to support decision making on urban planning. In Brazil, urban noise is not yet recognized as a major environmental problem by the government. Besides, cities that have databases to drive acoustic simulations, making use of advanced noise mapping systems, are rare. This study sought an alternative method of noise mapping through the use of geoprocessing, which is feasible for the Brazilian reality and for other developing countries. The area chosen for the study was the central zone of the city of Sorocaba, located in São Paulo State, Brazil. The proposed method was effective in the spatial evaluation of equivalent sound pressure level. The results showed an urban area with high noise levels that exceed the legal standard, posing a threat to the welfare of the population.  相似文献   

11.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

12.
Coal combustion in the power sector gives rise to the emission of primary and secondary particulate pollutants. Since the emission of pollutants depends on coal quality and combustion technology, and given that transport, transformation and deposition of contaminants depend on regional climatic conditions, specific studies for the power stations is needed to evaluate their environmental impacts. Monitoring of ambient respirable suspended particulate matter (RSPM) and suspended particulate matter (SPM) levels around a large coal-fired power station in India was carried out. The specific objectives were the determination of spatial and seasonal variability in RSPM and SPM levels, and their relationship with meteorological parameters such as wind velocity and relative humidity. The results have shown a marked seasonal trend and spatial variability in RSPM and SPM levels in the study area. Higher concentrations of ambient RSPM and SPM were found in downwind monitoring stations compared to upwind direction. Ratios of RSPM to SPM and correlation coefficient values between RSPM and SPM along with meteorological parameters were also worked out. Relative humidity and wind velocity have shown an inverse relation with particulate deposition pattern.  相似文献   

13.
Hydrogeochemical studies were carried out in the Penna–Chitravathi river basins to identify and delineate the important geochemical processes which were responsible for the evolution of chemical composition of groundwater. The area is underlain by peninsular gneissic complex of Archaean age, Proterozoic meta-sediments, and strip of river alluvium. Groundwater samples were collected covering all the major hydrogeological environs in pre- and post-monsoon seasons. The samples were analyzed for major constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO3 ???, HCO3 ???, Cl???, SO2 ???4, NO3 ???, and F???. The groundwater in general is of Na?+?–Cl???, Na?+?–HCO3 ???, Ca2?+?–Mg2?+?–HCO3 ???, and Ca2?+?–Mg2?+?–Cl??? types. Na?+? among cations and Cl??? and/or HCO3 ??? among anions dominate the water; Na?+? and Ca2?+? are in the transitional state with Na?+? replacing Ca2?+? and HCO3 ??? Cl??? due to physiochemical changes in the aquifer and water–rock interactions. The Ca2?+?–Mg2?+?–Cl??? HCO3 ??? type water in one third samples suggest that ion exchange and dissolution processes are responsible for its origin. Change in storage of aquifer in a season does not influence the major geochemical makeup of groundwater. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The aquifer material mineralogy together with semiarid climate, poor drainage system, and low precipitation factors played major role in controlling groundwater quality of the area.  相似文献   

14.
This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.  相似文献   

15.
Following the oil spill accident of the Solar I tanker in 2006 off the coast of Guimaras Island in the Philippines, polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in some aquatic organisms were investigated at Luzaran in Guimaras and Taklong Islands, which were heavily polluted with spilled oil, immediately and 1 month after the accident. The concentrations of total PAHs were 11.9–52.3 ng/g dry weight in fish. Meanwhile, total PAH concentrations in shellfish were 38.0–3,102 ng/g dry weight in Luzaran and 128–236 ng/g dry weight in Taklong. Pyrene, phenanthrene, and fluoranthene were dominant in most fish and chrysene in all shellfish. Significantly higher concentrations of all alkylated homologs were detected in shellfish than in fish. These differences had two possible causes, that is, the differences between fish and shellfish could be attributed to the uptake routes and/or their metabolizing abilities.  相似文献   

16.
Ensenada health officials lack pertinent information on the sustainable management of solid waste, as do health officials from other developing countries. The aims of this research are: (a) to quantify and analyze the household solid wastes generated in the city of Ensenada, Mexico, and (b) to project biogas production and estimate generation of electrical energy. The characterization study was conducted by socioeconomic stratification in two seasonal periods, and the biogas and electrical energy projections were performed using the version 2.0 Mexico Biogas Model. Per capita solid waste generation was 0.779?±?0.019 kg per person per day within a 98 % confidence interval. Waste composition is composed mainly of food scraps at 36.25 %, followed by paper and cardboard at 21.85 %, plastic at 12.30 %, disposable diapers at 6.26 %, and textiles at 6.28 %. The maximum capacity for power generation is projected to be 1.90 MW in 2019. Waste generated could be used as an intermediate in different processes such as recycling (41.04 %) and energy recovery (46.63 %). The electrical energy that could be obtained using the biogas generated at the Ensenada sanitary landfill would provide roughly 60 % of the energy needed for street lighting.  相似文献   

17.
In order to optimize the processes of sampling, monitoring, and management, the initial aim of this paper was to develop a model for the definition and prediction of temporal changes of water quality. In the case of the Morava River Basin (Serbia), the patterns of temporal changes have been recognized by applying different multivariate statistical techniques. The results of the conducted cluster analysis are the indicators of the existence of the three monitoring periods: the low-water, transitional, and high-water periods, which is in accordance with changes in the water flow in the analyzed river basin. A possibility of reducing the initial data set and recognizing the main pollution sources was examined by carrying out the principal component/factor analysis. The results indicate that the natural factor has a dominant influence in temporal groups. In order to recognize the discriminatory water quality parameters, a discriminant analysis (DA) was carried out. Conducting the DA enabled a significant reduction in the data set by the extraction of two parameters (the water temperature and electrical conductivity). Furthermore, the artificial neural network technique was used for testing the possibility of predicting changes in the values of the discriminant factors in the monitoring periods. The reliability of this method for the prediction of temporal variations of both extracted parameters within all temporal clusters has been proven.  相似文献   

18.
Aiming at the remote sensing application has been increasingly relying on ground object spectral characteristics. In order to further research the spectral reflectance characteristics in arid area, this study was performed in the typical delta oasis of Weigan and Kuqa rivers located north of Tarim Basin. Data were collected from geo-targets at multiple sites in various field conditions. The spectra data were collected for different soil types including saline-alkaline soil, silt sandy soil, cotton field, and others; vegetations of Alhagi sparsifolia, Phragmites australis, Tamarix, Halostachys caspica, etc., and water bodies. Next, the data were processed to remove high-frequency noise, and the spectral curves were smoothed with the moving average method. The derivative spectrum was generated after eliminating environmental background noise so that to distinguish the original overlap spectra. After continuum removal of the undesirable absorbance, the spectrum curves were able to highlight features for both optical absorbance and reflectance. The spectrum information of each ground object is essential for fully utilizing the multispectrum data generated by remote sensing, which will need a representative spectral library. In this study using ENVI 4.5 software, a preliminary spectral library of surface features was constructed using the data surveyed in the study area. This library can support remote sensing activities such as feature investigation, vegetation classification, and environmental monitoring in the delta oasis region. Future plan will focus on sharing and standardizing the criteria of professional spectral library and to expand and promote the utilization of the spectral databases.  相似文献   

19.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

20.
Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号