首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Ambient air particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) samples were collected during summer and autumn using a Staplex high-volume air sampler. They were later extracted with dichloromethane in a Soxhlet apparatus. Polyaromatic hydrocarbon (PAH) content in extracts was determined by the high-performance liquid chromatography technique using fluorescence detection, whereas the nitro-PAH content was determined by gas chromatography using mass detection. Four Salmonella typhimurium strains (TA98, TA100, YG1041, and YG1042) were used in assays conducted with and without metabolic activation. The extracts were also tested with the SOS chromotest supplied by Environmental Biodetection Products Incorporated. The obtained results confirmed the Salmonella assay and the SOS chromotest usability for the purpose of atmospheric pollution monitoring within an urban agglomeration. The atmospheric pollution extracts under examination differed among each other regarding total content and percentage of individual compounds, depending on the season of sampling. The highest total PAH content and the highest nitro-PAH content in the tested samples as well as the most extensive range of detected compounds were found in the autumn season (heating season). The highest mutagenicity was noted for PM2.5 samples collected in autumn. The high values of mutagenicity ratios and induction factors were obtained from assays carried out with and without metabolic activation, which is an argument for the presence of promutagens and direct mutagens. The YG1041 strain proved to be the most effective in detection of mutagenicity of the suspended dust extracts because of its notably high sensitivity to nitro-aromatic compounds. The SOS chromotest was very sensitive to a large spectrum of genotoxic air pollutants and showed a high degree of similarity with the results of the Salmonella assay. In comparison with the frequently used Ames test, the SOS chromotest enables quick analysis of the genotoxic effects of samples using only one tester strain. In addition, its miniaturized design decreases the consumption of tested samples.  相似文献   

2.
In the routine São Paulo state (Brazil) surface water quality-monitoring program, which includes the Salmonella microsome mutagenicity assay as one of its parameters, a river where water is taken and treated for drinking water purposes has repeatedly shown mutagenic activity. A textile dyeing facility employing azo-type dyes was the only identifiable source of mutagenic compounds. We extracted the river and drinking water samples with XAD4 at neutral and acidic pH and with blue rayon, which selectively adsorbs polycyclic compounds. We tested the industrial effluent, raw, and treated water and sediment samples with YG1041 and YG1042 and compared the results with the TA98 and TA100 strains. The elevated mutagenicity detected with YG-strains suggested that nitroaromatics and/or aromatic amines were causing the mutagenicity detected in the samples analyzed. Positive responses for the blue rayon extracts indicated that mutagenic polycyclic compounds were present in the water samples analyzed. The mutagen or mixture of mutagens present in the effluent and water samples cause mainly frameshift mutations and are positive with and without metabolic activation. The Salmonella assay combined with different extraction procedures proved to be very useful in the identification of the origin of the pollution and in the identification of the classes of chemical compounds causing the mutagenic activity in the river analyzed.  相似文献   

3.
Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed.  相似文献   

4.

The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG1024 (a frameshift-detecting strain) and YG1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG1024 and YG1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG1029 but did not change significantly for YG1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG1024 and YG1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   

5.
In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM2.5–0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.  相似文献   

6.
Abstract

Microtox and Ames bioassays were employed to assess acute toxicity and mutagenicity of water soluble components of class–fractionated oils extracted from one creosote–and four petroleum–contaminated soils. Microtox results revealed that potential acute toxicity resides mainly in the polar class fractions at three sites and indicated potential synergistic and antagonistic effects between compounds in the total extracts at two sites. Ames Salmonella/microsome testing indicated that the polyaromatic fractions at two sites exhibit weak mutagenicity with enzymatic activation, while the polar fractions at two sites are weakly mutagenic without enzyme activation. Further chemical characterization of the polar and polyaromatic fractions is required to fully assess the potential of health and ecological risks at the creosote–and petroleum–contaminated sites exhibiting these toxic responses.  相似文献   

7.
To evaluate the genotoxic risk that contaminated sediment could constitute for benthic organisms, three contaminated (VA, VC and VN) and one uncontaminated (RN) sediment samples were collected in the Berre lagoon (France). Potentially bioavailable contaminants in sediments were obtained using sediment extraction with synthetic seawater adjusted to pH 4 or pH 6, simulating the range of pH prevailing in the digestive tract of benthic organisms. The genotoxic activities of these extracts were evaluated by three short-term bioassays: the Salmonella mutagenicity test using the Salmonella typhimurium strain TA102, the alkaline comet assay and the micronucleus assay on the Chinese Hamster Ovary cells CHO-K1. Results of the Salmonella mutagenicity assay detected a mutagenic response for RN extract at pH 6, and for VA extract at pH 4. Results of the comet and micronucleus assays detected low genotoxic/clastogenic activities for VA and VC extracts at pH 6 and higher activities for RN, VA and VC extracts at pH 4. To identify if metals (Al, Fe, Mn, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were involved in these genotoxic activities, their concentrations were determined in the extracts, and their speciation was assessed by thermodynamic calculations. Results showed that extracts from sites VA, VC and VN generally presented the highest trace metal contents for both extractants, while the site RN presented lower trace metal contents but the highest Fe and Mn contents. Thermodynamic calculations indicated that Fe, Mn, As and in a lower extend Co, Ni and Zn were mainly present under free forms in extracts, and were consequently, more likely able to induce a genotoxic effect. Results globally showed no correspondence between free metal contents and genotoxic activities. They suggested that these positive results could be due to uncharacterized compounds, acting as direct genotoxic agents or enhancing the genotoxic properties of analyzed metals.  相似文献   

8.
The distribution of mutagenic activity and nitroaromatic components of polycyclic organic matter (POM) in ambient air at industrial, urban, suburban, rural, and remote sites was studied using organic extracts from high volume aerosol samples. Direct-acting mutagens including 1-nitropyrene (1-NP), dinitropyrenes (DNP), and hydroxynitropyrenes (HNP) were measured by high performance liquid chromatography while the mutagenicity was determined in the Salmonella bioassay with strain TA-98. Benzo(a)pyrene (BaP), one of the possible precursors of nitroaromatic compounds in POM, was also measured. In comparing samples from a range of sites, TSP and the concentration of BaP per mass of particulate matter decreased, as expected, at greater distances from urban and industrial combustion sources. However, the concentrations of polar nitroaromatic POM compounds per mass of particles were higher at a remote site than in nonindustrial urban and suburban areas. The mutagenicity in particulate matter extracts from the remote area was predominantly (>90 percent) in the very polar fractions. There were also high atmospheric levels of nitroaromatic compounds and mutagenicity in heavily industrialized areas. These observations may reflect the influences of source emissions, atmospheric transformations of POM compounds, and ther atmospheric processes on the composition of ambient suspended particulate matter.  相似文献   

9.
Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using a bioassay-directed fractionation approach. Sample extracts were fractionated using an alumina/Sephadex gel clean-up procedure to afford non-polar aromatic fractions which were characterized using chemical analyses and the Ames/microsome bacterial assay in Salmonella typhimurium strains YG1025 with the addition of oxidative metabolism (S9), and YG1024 without S9. Non-polar aromatic fractions of selected samples were separated by normal phase HPLC into 1-min fractions which were subjected to bioassay analyses. The bioassays using strain YG1025+S9, a TA100-type strain, were performed to assess genotoxicity arising from the presence of polycyclic aromatic hydrocarbons (PAH). Fractions which exhibited mutagenic activity contained PAH with molecular masses of 252, 276 and 278 amu; these fractions contained over 80% of the genotoxicity attributable to PAH. Individual compounds identified using Gas Chromatography-Mass Spectrometry analyses in these active fractions included benzo[a]pyrene, indeno[cd]pyrene and dibenz[a,h]anthracene. The YG1025+S9 mutagenic activity profiles were similar for all samples. Mutagenic activity profiles generated using strain YG1024-S9, a TA98-type strain sensitive to compounds characteristic of mobile source emissions, were very different. The mutagenic activities in strain YG1024-S9 were greatest for harbour-suspended sediment samples collected from sites impacted by a major tributary. Suspended sediments collected near areas known to contain high levels of coal tar-contamination in the bottom sediments contained higher levels of genotoxic PAH than suspended sediments collected from other areas of the harbour.  相似文献   

10.
Recently, much attention has been devoted to urban air pollution because epidemiological studies have reported health impacts related to particulate matter (PM). PM10 and PM2.5 were collected during different seasons in Torino, a northern Italian city, and were characterised by inorganic chemical species (secondary particulates and bio-available iron). The biological effects of aqueous and organic solvent PM extracts on human epithelial lung A549 were evaluated, and the effects on cell proliferation and lactate dehydrogenase (LDH) release were assayed. The average PM10 concentration during the sampling period was 47.9?±?18.0 μg/m3; the secondary particles accounted for 49 %?±?9 % of the PM10 total mass, and the bio-available iron concentration was 0.067?±?0.045 μg/m3. The PM2.5/PM10 ratio in Torino ranged from 0.47 to 0.90 and was higher in cold months than in warm months. The PM10 and PM2.5 extracts inhibited cell proliferation and induced LDH release in a dose-dependent manner with a seasonal trend. The PM10 extract had a stronger effect on LDH release, whereas the PM2.5 extract more strongly inhibited cell proliferation. No significant differences were observed in the effects induced by the two extracts, and no significant correlations were found between the biological effects and the PM components evaluated in this study, thus emphasising the importance of the entire mixture in inducing a cytotoxic response.  相似文献   

11.
Guo R  Ebenezer V  Ki JS 《Chemosphere》2012,86(5):512-520
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow® kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution.  相似文献   

12.
The contribution of fenitrothion and its microbial metabolites to the mutagenicity of a fenitrothion-containing solution was investigated during anaerobic biodegradation. Although a mixed culture of bacteria obtained from a paddy field degraded fenitrothion and reduced its concentration from 4.6 to 0.1 mg/l in 6 days, the indirect mutagenicity of the solution in Salmonella strain YG1029 increased. This increase was found to be partially due to amino-fenitrothion generated during the biodegradation. In addition, other unidentified metabolites contributed to the mutagenicity. In contrast, the indirect mutagenicity in strain YG1042, which was initially large because of fenitrothion, then decreased, and increased again. This increase in mutagenicity was also due to amino-fenitrothion and other unidentified metabolites. The mutagenicity in strains YG1029 and YG1042 decreased after day 6. The greatest contribution of amino-fenitrothion to the mutagenicity was calculated to be 73% and 61% in YG1029 and YG1042 on day 3 of incubation, respectively. That of unidentified metabolites was calculated at 49% and 61% on day 20, respectively. Therefore, because not all the toxic metabolites of a compound can be identified, it is important to evaluate the toxicity of a whole solution in a bioassay such as the Ames assay rather than deducing the toxicity of the solution from the combined toxicities of known metabolites.  相似文献   

13.
In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003-2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute approximately 65-80% to measured OC, with wood smoke, on average, accounting for approximately 41% of OC and approximately 18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

14.
The Deep Creek Lake Study of 1983 provided an opportunity to obtain emission samples from coal-fired power plants with a dilution sampler for mutagenicity testing. Stack and ambient samples of particulate matter were collected with a dilution sampler at three coal-fired power plants in West Virginia. Samples were sequentially extracted with cyclohexane (CX), dichloromethane (DCM) and acetone (ACE) and tested for mutagenicity in the Ames Salmonella/microsome assay using TA98 (-S9). For the stack samples, the CX, DCM and ACE fractions constituted 1.0, 0.7 and 98.1 percent of the total extractable organic material (EOM), respectively, compared to 28.5, 7.4 and 64.1 percent for the ambient samples. In contrast, the mutagenic activity of the organic fractions was concentrated in the CX and DCM fractions.

The cyclohexane- and dichloromethane-soluble fractions of the stack samples from all locations exhibited mutagenicity when tested in the plate incorporation assay. No significant response was observed with the acetone fraction. When tested with Kado's modification of the preincubation assay, the acetone-soluble fraction did exhibit mutagenic activity comparable to that of the other fractions when expressed in units of revertants per milligram of particular matter. Chemical analyses of one of the acetone-soluble fractions indicated that half of the mass was sulfuric acid while the remainder consisted of C, H and O. More than 30 peaks were detected in the high pressure liquid chromatogram of this fraction.

Although little mutagenic activity was detected in the polar ACE fraction of the diluted stack emissions samples with this single bioassay, in view of the large mass of this fraction, further investigation of the chemical composition and genotoxic activity of this fraction would be prudent.  相似文献   

15.
We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process. The treatment process involves heating a mixture of the soil, polyethylene glycol (or hydrocarbons with boiling points of 310–387°C), and sodium hydroxide to 250–350°C. Dechlorination reduced by >99% the PCB concentration of the soil, which was initially 2,200 ppm. The DCM extracts of both control and treated soils were not mutagenic in strain TA100 of Salmonella, but they were mutagenic in strain TA98. Based on results in strain TA98, the base-catalyzed dechlorination process reduced the mutagenic potency of the soil by approximately one-half. The DCM extracts of the soils before and after treatment were equally genotoxic in a prophage-induction assay in . , which detects some chlorinated organic carcinogens that are not detected by the Salmonella mutagenicity assay. These results suggest that treatment of PCB-contaminated soil by base-catalyzed dechlorination reduced the mutagenicity of the soil slightly.  相似文献   

16.
Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m?3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction.The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations (r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak (r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers can aid in identifying factors that influence personal exposures to PM2.5.  相似文献   

17.
Complex mixtures extracted from air filters exposed for 24 h in two sessions (27 July and 02 August 1991) and at two locations (Merced, downtown, and Pedregal de San Angel, south-west) in Mexico City were analysed. The organic extracts were from airborne particles equal or smaller than 10 microns (PM10), and from total suspended particles (TSP). These organic extracts were assayed in the somatic mutation and recombination test (SMART) in wings of Drosophila melanogaster using two different crosses as well as in the Salmonella/microsome assay using strain TA98 with and without S9 fraction. The presence of polycyclic aromatic hydrocarbons (PAH) in the extracts was determined by gas chromatography. The genotoxic activities observed in the two test systems were comparable with the indirect mutagens producing greater response than the direct mutagens. The quantities of particulate matter as well as the genotoxic activities were higher on 02 August than on 27 July 1991 for both locations. The amounts of airborne particles and the resulting genotoxic activities were higher at Merced than at Pedregal. In both biological systems, PM10 were more genotoxic than TSP. These results demonstrate the sensitivity of the Drosophila wing SMART-which is an in vivo eukaryotic genotoxicity assay-as a biological monitor of environmental pollution related to airborne particles.  相似文献   

18.
The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG 1024 (a frameshift-detecting strain) and YG 1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG 1024 and YG 1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG 1029 but did not change significantly for YG 1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG 1024 and YG 1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   

19.
Abstract

In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003–2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute ~65–80% to measured OC, with wood smoke, on average, accounting for ~41% of OC and ~18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

20.
We aimed to: (1) evaluate the change in mutagenicity of a fenitrothion-containing solution during photolysis and (2) elucidate mutagenic compounds that were possible major contributors to mutagenicity. A batch test involving irradiation by natural sunlight was conducted on the solution, and then HPLC fractionation, mutagenicity testing, and gas chromatography-mass spectrometry (GC-MS) analysis were performed on the irradiated solution. During the 15-day photolysis, fenitrothion was almost completely decomposed, and 34 transformed products (TPs) were generated. Photolysis decreased the mutagenicity of the fenitrothion-containing solution for base-pair-substitution-detecting tester strains (YG1026 and YG1029) but increased mutagenicity for frameshift-detecting tester strains (YG1021 and YG1024). One TP was identified as a potential source of the increased mutagenicity; its molecular formula was estimated to be (CH(3)O)(2)PS-O-C(8)H(6)NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号