首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of organochlorine compounds in eggs of water birds from the colony on Tai Lake in China were studied. The eggs were collected in 2000 and belonged to the following species: 65 samples of black-crowned night heron (Nycticorax nycticorax), 36 samples of little egret (Egretta garzetta), 26 samples of cattle egret (Bubulcus ibis) from 13 clutches and 43 samples of Chinese pond heron (Ardeola bacchus) from 17 clutches. Dichlorodiphenyltrichloroethane (DDT) and its derivates (DDE and DDD), hexachlorocyclohexane (HCH) and its isomers (-HCH, -HCH, -HCH, -HCH), heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin, endrin aldehyde, -endosulfan, -endosulfan, and endosulfan sulfate were determined in the laboratory by gas chromatography. The data showed that DDE had the highest levels in all the samples, followed by -HCH. The mean levels of DDE among the water bird species were in the order as follows: black-crowned night heron (5464.26ng/g, dry weight) > Chinese pond heron (2791.12ng/g, dry weight) > little egret (1979.97ng/g, dry weight) > cattle egret (660.11ng/g, dry weight). DDT and its metabolites accounted for 90% of the total organochlorines, except that it was only 73% for cattle egret. The differences of the residue among the bird species were statistically significant and could be attributed to their variations in prey and habitat. Although the DDE burdens in Tai Lake were much lower than 8 g/g (wet weight) which are thought to have significant adverse effects on black-crowned night herons, they would be expected to increase the risk of adverse effects on survival of chicks of herons and egrets, particularly black-crowned night heron, based on the critical value of 1 g/g (wet weight) DDE. The burdens of HCHs in this study were higher and the cyclodienes were lower than those found elsewhere.  相似文献   

2.
Summary. Lingually mediated prey chemical discrimination in lizards has evolved in active foragers, been lost in taxa that have reverted to ambush foraging, and has not evolved in taxa that have retained the ancestral ambushing. Previous studies have shown that all families of insectivorous ambushers lack prey chemical discrimination, including most families of iguanian lizards and two gekkonid species. I conducted experimental studies of prey chemical discrimination in representatives of two additional iguanian families and a third gekkonid lizard. An oplurid species, Oplurus cuvieri and a corytophanid, Corytophanes cristatus, did not discriminate among prey chemicals and control substances. Prey chemical discrimination is now known to be absent in insectivorous ambush foragers in all but one of the families in Iguania, one of the two major lizard radiations. Hoplocercidae remains unstudied. Like other ambushing gekkonid lizards, Pachydactylus turneri did not exhibit elevated tongue-flick rates in response to prey chemicals. However, after tongue-flicking or being touched on the labial scales by cotton swabs, these lizards bit swabs bearing prey chemicals more frequently than control stimuli. They also exhibited buccal pulsing more frequently in response to prey chemicals than deionized water, suggesting olfactory sampling. The unusually highly developed olfactory organs of gekkonid lizards and their nocturnal habits suggest that olfaction may be more important to foraging than in other lizards. Further studies are needed to determine relative roles of olfaction and vomerolfaction in selective response to prey chemicals and to ascertain whether and to what extent the tongue may be used to locate and identify prey. Received 30 March 1999; accepted 26 July 1999  相似文献   

3.
Although the existence of robust inverted biomass pyramids (IBPs) seems paradoxical, they are well known to exist in planktonic communities, and have recently been discovered in pristine coral reefs and in a reef off the North Carolina coast. Understanding the underlying mechanisms which produce inverted biomass pyramids provides new ecological insights. Some ecologists hypothesize that “the high growth rate of prey and low death rate of predators” causes IBPs. However, we show this is not always the case (see Sections 3.1 and 4). We devise predator–prey models to describe three mechanisms that can lead to IBPs: (1) well-mixed populations with large prey turn-over rate, (2) well-mixed populations with prey immigration, and (3) non-mixed populations where the prey can hide in refuges. The three models are motivated by the three ecosystems where IBPs have been observed. We also devise three refuge mediated models, with explicit refuge size, which incorporate different prey responses in the refuge, and we discuss how these lead to IBPs.  相似文献   

4.
Summary. Detection of heterospecific predators and prey via chemical cues is well known, but only a few studies have examined the potential for such discrimination in cannibalistic systems. In newts, Notophthalmus viridescens, adults are opportunistic predators of conspecific larvae. I used a laboratory bioassay to determine whether larvae and adults distinguish between chemical stimuli from members of the different age classes. Larvae distinguished between chemical stimuli from larvae and adults by decreasing their activity only following exposure to stimuli from adults. Decreased activity is consistent with an antipredator response in many prey species, including larval newts. In contrast, adults increased their activity and increased time spent in open areas in response to stimuli from larvae, but not to stimuli from adults. Increased activity is consistent with a feeding response; adults also showed increased activity and increased time in open areas in response to chemical stimuli from familiar heterospecific prey (brine shrimp). The proximate cue that allowed the newts to distinguish between the different age classes is not associated with short-term dietary differences because all stimulus animals were fed the same prey. Stimulus strength was controlled by diluting the stimulus solutions according to the volume of the stimulus animal. Therefore, there appear to be intrinsic differences in the chemical signatures of larval and adult newts.  相似文献   

5.
In the present paper we propose a modification of a basic eco-epidemiological model by incorporating predator switching among susceptible and infected prey population. A local and global study of the basic model is performed around the disease-free boundary equilibrium and the interior equilibrium to estimate important parameter thresholds that control disease eradication and species coexistence. Next we analyze the switching model from the same perspective in order to elucidate the role of switching on disease dynamics. Numerical simulations are carried out to justify analytical results.  相似文献   

6.
Intensive study of arboreal forest-dwelling primates and their predators in Africa is increasingly revealing that crowned eagles (Stephanoaetus coronatus) are major predators of primates. Gray-cheeked mangabeys (Lophocebus albigena) are overrepresented in the diets of crowned eagles in Kibale National Park, Uganda, and adult male mangabeys are represented more than females. We focused on the behavior of adult male gray-cheeked mangabeys living in social groups in Kibale National Park (1) to clarify the interactions between mangabeys and eagles that might put adult males at greater risk and (2) to better understand individual variation in behavioral responses to predators. Adult male mangabeys in five groups responded to observer-confirmed presence of crowned eagles 88 times over a 13-month period. While all males gave alarm calls, only the highest-ranking male in each of four groups chased eagles. These males had elevated levels of fecal cortisol metabolites in the days immediately after they engaged in active defense, suggesting that they perceived such behavior as risky. In the one group where male ranks were unstable and there were no infants, no male was observed to chase eagles. We suggest that males pursue the dangerous tactic of chasing eagles only when they are likely to have offspring in the group. Males in larger groups also spent less time alarm calling to crowned eagles (from first to last call in a group), and our observations confirmed that the duration of their alarm calls was related to eagle presence. Thus, eagles spent less time around larger mangabey groups. Alarm calling by adult male mangabeys may signal to this ambush predator that it has been detected and should move on.  相似文献   

7.
Ecology and epidemiology are two major fields of study in their own right, but they have some common features. [Chattopadhyay, J., Pal, S., El Abdllaoui, A., 2003. Classical predator–prey system with infection of prey population—a mathematical model. Math. Meth. Appl. Sci. 26, 1211–1222] considered a predator–prey model with disease in the prey population. They analyzed the system based on the assumption that horizontal incidence follows simple mass action incidence. Mass action incidence is appropriate for a constant population, but for a large population, standard incidence is more appropriate. The complicated dynamics around (0, 0, 0) arise because of standard incidence. The conditions under which the population reaches the origin either by following the axis or in a spiral pattern were determined. Numerical experiments were performed to observe the dynamics of the system with mass action incidence and standard incidence. This investigation showed that the infection rate plays a crucial role for predicting the behavior of the dynamics in the long run.  相似文献   

8.
连续 2a实地调查了太湖鼋头渚地区鹭鸟的觅食生境 ,并搜集其雏鸟的反吐物 ,初步掌握了该地区不同鹭鸟对觅食生境的选择与食物组成情况。结果表明 ,无锡鼋头渚地区白鹭与夜鹭主要在鱼塘、湖泊觅食 ,白鹭在湖滨觅食 ,而夜鹭还会到湖中央水面觅食 ;池鹭觅食区域较广 ,主要在鱼塘。鹭群主要的食物类型是鱼类 ,白鹭食物几乎全为鱼类 ,夜鹭 95 %的食物为鱼类 ,兼有少量的蛙类、甲壳类和小型哺乳类动物。  相似文献   

9.
This paper demonstrates that while pattern formation can stabilize individual-based models of predator–prey systems, the same individual-based models also allow for stabilization by alternate mechanisms, particularly localized consumption or diffusion limitation. The movement rules of the simulation are the critical feature which determines which of these mechanisms stabilizes any particular predator–prey individual-based model. In particular, systems from well-connected subpopulations, in each of which a predator can attack any prey, generally exhibit stabilization by pattern formation. In contrast, when restricted movement within a (sub-)population limits the ability of predators to consume prey, localized consumption or diffusion limitation can stabilize the system. Thus while the conclusions from differential equations on the role of pattern formation for stability may apply to discrete and noisy systems, it will take a detailed understanding of movement and scales of interaction to examine the role of pattern formation in real systems. Additionally, it will be important to link an understanding of both foraging and inter-patch movement, since by analogy to the models, both would be critical for understanding how real systems are stabilized by being discrete and spatial.  相似文献   

10.
Matriphagous young of a subsocial spider Amaurobius ferox exhibit collective predation during their post-maternal social period. In this paper, we examine functional mechanisms of collective predation by sibling groups. Predation efficiency increased with increasing number of individuals within each group. Solitary or paired individuals were generally unable to capture a 20 mg cricket. In larger groups, more individuals participated and captured the prey more quickly. Some siblings did not take part in paralyzing prey, but later consumed it. The proportion of these profiteers within a group increased with the group size. Presented with prey of different sizes (1, 5, or 40 mg), siblings were most aggressive towards each other when predating on 5 mg prey. Prey of this size could be captured by a single individual and yet were sufficiently large for more than one individual to eat. Siblings were much less aggressive towards one another during the capture of 40 mg prey, which require the assistance of other individuals to capture. By providing the same mass of prey in different numbers of individuals (a single cricket of 40 or 40 mg of first-instar crickets), we tested the influence of cooperation on the post-maternal social period. We found no difference in the development of young during the social period nor the timing of dispersal and the body mass of dispersing individuals. We conclude that the young of this subsocial animal increased predation efficiency by cooperative hunting after the mother's death.  相似文献   

11.
Raptor–prey encounters were studied to evaluate the strategies and success rate of both predator attack and prey defense. We compared the success of barn owls in catching stationary simulated prey (food item) with that of moving prey (food item that was pulled in various directions). We also tracked real encounters between barn owls and spiny mice in a captive environment. It was found that owls had higher success in attacking stationary prey and that they seemed to attack the prey as soon as it became motionless. When attacked, only a few spiny mice remained immobile (freeze response) whereas most fled and usually avoided capture by the owls. It was also found that spiny mice displayed a preference to escape in those directions in which owls had demonstrated a lower success in catching the simulated prey. Escape initiation dichotomized to a short or long (but rarely intermediate) distance between the spiny mouse and the owl with more successful avoidance at short-distance (last-moment) escapes. The best predictor of escape success was the velocity of the spiny mouse, and the second best predictor was its flight initiation distance (FID). We present an update for Ydenberg and Dill’s model for optimal FID in close encounters, suggesting that fleeing at the last moment is advantageous. However, a last-moment attempt to escape is also more risky with a split second differing between life and death, and is therefore appropriate mainly for agile prey under close-distance attack.  相似文献   

12.
Summary. While the response to damage-released chemical alarm cues within the superorder Ostariophysi appears to be highly conserved across species, it is generally observed that the intensity of response to heterospecific alarm cues decreases with increasing phylogenetic distance. Recent studies have demonstrated that purine-N-oxides function as chemical alarm cues within Ostariophyian fishes and that the nitrogen-oxide functional group is conserved as the chief molecular trigger. According to the purine-ratio hypothesis, these cross-species differences may be due to the relative proportion of different carrier compounds associated with the nitrogen-oxide molecular trigger. To test this hypothesis, we exposed glowlight tetras (Hemigrammus erythrozonus, Characidae, Ostariophysi) to one of five synthetic stimuli (hypoxanthine-3-N-oxide (H3NO), pyridine-N-oxide (PNO) or mixed stimuli of 75 % H3NO-25 % PNO, 50 % H3NO-50 % PNO, or 25 % H3NO-75 % PNO), natural conspecific chemical alarm cue or a distilled water control. We quantified changes in shoal cohesion and vertical area use as species typical indicators of an antipredator response. As predicted, response intensity decreased as the ratio of hypoxanthine-3-N-oxide to pyridine-N-oxide decreased and the strongest response was to natural alarm cue. These results suggest that species-specific carrier compounds may account for the well-documented cross-species differences in the response to heterospecific alarm cues within phylogenetically related taxa.  相似文献   

13.
Termination of harmful algal blooms (HABs) and coexistence of phytoplankton–zooplankton populations are of great importance to human health, ecosystem, environment, tourism and fisheries. In this paper, we propose a three component model consisting of non-toxic phytoplankton (NTP), toxin producing phytoplankton (TPP) and zooplankton (Z). The growth of zooplankton species is assume to reduce due to toxic chemicals released by TPP population. We have extended the model proposed by Chattopadhyay et al. [Chattopadhyay, J., Sarkar, R.R., Pal, S., 2004. Mathematical modelling of harmful algal blooms supported by experimental findings. Ecol. Comp. 1, 225–235] by including competition terms between TPP and NTP. We observe the effect of competition factors both in the presence and absence of the environmental fluctuation. From our field as well as model analysis we observe that competition helps in the coexistence of the species, but if the effect of competition is very high on the TPP population, it results in planktonic bloom. It is shown that the coexistence equilibrium loses its stability when the competition coefficient crosses a critical value and resulting Hopf-bifurcation around the positive equilibrium depicting oscillations phenomena of the populations.  相似文献   

14.
A central question in the study of predator–prey relationships is to what extent prey behaviour is determined by avoidance of predators. Here, we test whether the long-term risk of encountering lions and the presence of lions in the vicinity influence the behaviour of large African herbivores at waterholes through avoidance of high-risk areas, increases in group size, changes in temporal niche or changes in the time spent in waterhole areas. In Hwange National Park, Zimbabwe, we monitored waterholes to study the behaviour of nine herbivore species under different risks of encountering lions. We radio-collared 26 lions in the study area which provided the opportunity to monitor whether lions were present during observation sessions and to map longer-term seasonal landscapes of risk of encountering lions. Our results show that the preferred prey species for lions (buffalo, kudu and giraffe) avoided risky waterholes. Group size increased as encounter risk increased for only two species (wildebeest and zebra), but this effect was not strong. Interestingly, buffalo avoided the hours of the day which are dangerous when the long-term and short-term risks of encountering lions were high, and all species showed avoidance of waterhole use at night times when lions were in the vicinity. This illustrates well how prey can make temporal adjustments to avoid dangerous periods coinciding with predator hunting. Additionally, many herbivores spent more time accessing water to drink when the long- and short-term risks of encountering lions were high, and they showed longer potential drinking time when the long-term risk of encountering lions was high, suggesting higher levels of vigilance. This study illustrates the diversity of behavioural adjustments to the risk of encountering a predator and how prey respond differently to temporal variations in this risk.  相似文献   

15.
A dynamic simulation model was constructed using outputs from a balanced Gulf of Maine (GOM) energy budget model as the initial parameter set. The model was structured to provide a recipient control set of dynamics, largely based off of flows to and from different biological groups. The model was used to produce Monte Carlo simulations that were compared (percent change in biomass) with basecase simulations for a variety of scenarios. Changes in primary production, large increases in pelagic and demersal fish biomass, increases in fishing mortality, and large increases in top predators such as baleen whales and pinnepids were simulated. These scenarios roughly simulated the potential impacts of climate change, altered fishing pressure, additional protected species mitigations, and combinations thereof. Results suggest that the GOM system is primarily influenced by bottom-up processes involving phytoplankton, zooplankton, and bacterial biomass. Pelagic and demersal fish were important in determining trends in some of the scenarios. Marine mammals, large pelagic fish, and seabirds have a minor role in the GOM system in terms of biomass flows among the ecosystem components. The system is resilient to large-scale change due, in part to many predator–prey linkages. However, major alterations could occur from sustained climate change, high fishing rates, and by combinations of these types of external forcing mechanisms.  相似文献   

16.
Summary Ingestively naive hatchling coachwhip snakes(Masticophis flagellum) detected integumentary chemicals from several potential prey species and discriminated them from chemical stimuli from other animals and from distilled water, strongly suggesting a genetic basis for these abilities. The strongest responses were to lizard and snake stimuli, which form a major part of the diet. Variable responses to chemical cues from other taxa are discussed. Responses by coachwhip snakes to prey chemicals appear to be highly specific, as suggested by the stronger reaction to vomodors of sympatric than of allopatric lizard species. The highly developed use of chemical cues by the diurnal, visually oriented coachwhip snake emphasizes the general importance of chemical senses to predation by nonvenomous snakes, regardless of the involvement of vision.  相似文献   

17.
The persistence of species in reserves depends in large part on the persistence of functional ecological interactions. Despite their importance, however, ecological interactions have not yet been explicitly incorporated into conservation prioritization methods. We develop here a general method for incorporating consumer–resource interactions into spatial reserve design. This method protects spatial consumer–resource interactions by protecting areas that maintain the connectivity between the distribution of consumers and resources. We illustrate our method with a conservation planning case study of a mammalian predator, American marten (Martes americana), and its two primary prey species, Red-backed vole (Clethrionomys rutilus) and Deer mouse (Peromyscus maniculatus). The conservation goal was to identify a reserve for marten that comprised 12% of a forest management unit in the boreal forest in Québec, Canada. We compared reserves developed using analysis variants that utilized different levels of information about predator and prey habitat distributions, species-specific connectivity requirements, and interaction connectivity requirements. The inclusion of consumer–resource interactions in reserve-selection resulted in spatially aggregated reserves that maintained local habitat quality for the species. This spatial aggregation was not induced by applying a qualitative penalty for the boundary length of the reserve, but rather was a direct consequence of modelling the spatial needs of the interacting consumer and resources. Our method for maintaining connectivity between consumers and their resources within reserves can be applied even under the most extreme cases of either complete spatial overlap or complete spatial segregation of consumer–resource distributions. The method has been made available via public software.  相似文献   

18.
Although predator–prey cycles can be easily predicted with mathematical models it is only since recently that oscillations observed in a chemostat predator–prey (rotifer–algal) experiment offer an interesting workbench for testing model soundness. These new observations have highlighted the limitations of the conventional modelling approach in correctly reproducing some unexpected characteristics of the cycles. Simulations are improved when changes in algal community structure, resulting from natural selection operating on an assemblage of algal clones differing in competitive ability and defence against rotifer predation, is considered in multi-prey models. This approach, however, leads to extra complexity in terms of state variables and parameters. We show here that multi-prey models with one predator can be effectively approximated with a simpler (only a few differential equations) model derived in the context of adaptive dynamics and obtained with a moment-based approximation. The moment-based approximation has been already discussed in the literature but mostly in a theoretical context, therefore we focus on the strength of this approach in downscaling model complexity by relating it to the chemostat predator–prey experiment. Being based on mechanistic concepts, our modelling framework can be applied to any community of competing species for which a trade-off between competitive ability and resistance to predators can be appropriately defined. We suggest that this approach can be of great benefit for reducing complexity in biogeochemical modelling studies at the basin or global ocean scale.  相似文献   

19.
A mechanistic model was developed to assess the impact of predation of juvenile Notonecta maculata on size structured Daphnia magna populations and to provide a framework for quantifying the backswimmers uptake of food. Results of experiments and model predictions clearly demonstrate selective predation of backswimmers when fed with a choice of daphnid size classes, with patterns of selectivity differing across N. maculata instars. The model describes the foraging process empirically on the base of a general predation cycle including four conditional events instead of using classic functional response curves. For model parameterisation components of predation, namely probability of encounter, attack and success as well as time spent on handling prey was directly observed by means of video tracking experiments. Since attack rate, capture success and handling time appeared to be a function of prey size differing between Notonecta instars, the model takes into account ontogenic changes in both predator and prey characteristics. Independent data of functional response and size selectivity experiments were used for model validation and proved the model outcome to be consistent with observations.  相似文献   

20.
Abstract: Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget‐limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator–prey model based on a Lotka‐Volterra system to investigate the cost‐effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed‐number control), removal of a constant proportion of predators (fixed‐rate control), removal of predators that exceed a predetermined threshold (upper‐trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower‐trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed‐number, and lower‐trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper‐trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper‐trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the “best” strategy when financial resources are limited and eradication is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号