首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
ABSTRACT

An intercomparison study has been performed with six empirical ozone interpolation procedures to predict hourly concentrations in ambient air between monitoring stations. The objective of the study is to use monitoring network data to empirically identify an improved procedure to estimate ozone concentrations at subject exposure points. Four of the procedures in the study are currently used in human exposure models (nearest monitors daily mean and maximum, regression estimate used in the U.S. Environmental Protection Agency's (EPA) pNEM, and inverse distance weighting), and two are being evaluated for this purpose (kriging in space and kriging in space and time). The study focused on spatial estimation during June 1-June 5, 1996, with relatively high observed ozone levels over Houston, Texas. The study evaluated these procedures at three types of locations with monitors of varying proximity. Results from the empirical evaluation indicate that kriging in space and time provides excellent estimates of ozone concentrations within a monitoring network, while the more often used techniques failed to capture observed pollutant concentrations. Improved estimation of pollutant concentrations within the region, and thus at subject locations, should result in improved exposure modeling.  相似文献   

2.
Ozone prediction has become an important activity in many U.S. ozone nonattainment areas. In this study, we describe the ozone prediction program in the Atlanta metropolitan area and analyze the performance of this program during the 1999 ozone-forecasting season. From May to September, a team of 10 air quality regulators, meteorologists, and atmospheric scientists made a daily prediction of the next-day maximum 8-hr average ozone concentration. The daily forecast was made aided by two linear regression models, a 3-dimensional air quality model, and the no-skill ozone persistence model. The team's performance is compared with the numerical models using several numerical indicators. Our analysis indicated that (1) the team correctly predicted next-day peak ozone concentrations 84% of the time, (2) the two linear regression models had a better performance than a 3-dimensional air quality model, (3) persistence was a strong predictor of ozone concentrations with a performance of 78%, and (4) about half of the team's wrong predictions could be prevented with improved meteorological predictions.  相似文献   

3.
The performance of three statistical methods: time-series, multiple linear regression and feedforward artificial neural networks models were compared to predict the daily mean ozone concentrations. The study here reported was based on data from one urban site with traffic influences and one rural background site. The studies were performed for the year 2002 and the respective four trimesters separately. In the multiple linear regression and feedforward artificial neural network models, the concentrations of ozone, the concentrations of its precursors (nitrogen oxides) and some meteorological variables for one and two days before the prediction day were used as predictors. For the application of these models in the validation step, the inputs of ozone concentration for one and two days before were replaced by the ozone concentrations predicted by the models. The results showed that time-series modelling was not profitable. In the development step, similar performances were obtained with multiple linear regression and feedforward artificial neural network. Better performance indexes were achieved with feedforward artificial neural network models in validation step. Concluding, feedforward artificial neural network models were more efficient to predict ozone concentrations.  相似文献   

4.
Real-time ozone (O3) maps, intended for public access and mass media, are generated from spatially interpolating (i.e., kriging) sparse monitoring data and are typically characterized by over-smoothed surfaces that inadequately represent local-scale spatial patterns (e.g., averaged over 1 km2). In this paper, a hybrid regression-interpolation methodology is developed to enhance the representation of local-scale spatiotemporal patterns with an application to Tucson, Arizona. The mapping of local patterns is enhanced with pre-interpolation regression modeling of local-scale deviation-from-mean variability, preserving variation in the monitor data that is ubiquitous across the modeling domain (i.e., the areal mean). The model is trained on several years of deviation-from-mean hourly O3 data, and predictor variables are developed using theoretically and empirically derived proxy regression variables. The regression model explains a significant proportion of the variation in the data (r2 = 0.54), with an average error of 7.1 ppb. When augmented with the areal mean, the r2 of the pre-interpolation model increases to 0.847. Model residuals are then spatially interpolated to the extents of the modeling domain. Final concentration estimate maps are the summation of areal mean, regression, and spatially interpolated surfaces, preserving absolute values at monitor locations.  相似文献   

5.
ABSTRACT

Ozone prediction has become an important activity in many U.S. ozone nonattainment areas. In this study, we describe the ozone prediction program in the Atlanta metropolitan area and analyze the performance of this program during the 1999 ozone-forecasting season. From May to September, a team of 10 air quality regulators, meteorologists, and atmospheric scientists made a daily prediction of the next-day maximum 8-hr average ozone concentration. The daily forecast was made aided by two linear regression models, a 3-dimensional air quality model, and the no-skill ozone persistence model. The team's performance is compared with the numerical models using several numerical indicators. Our analysis indicated that (1) the team correctly predicted next-day peak ozone concentrations 84% of the time, (2) the two linear regression models had a better performance than a 3-dimensional air quality model, (3) persistence was a strong predictor of ozone concentrations with a performance of 78%, and (4) about half of the team's wrong predictions could be prevented with improved meteorological predictions.  相似文献   

6.
During the summers of 2003 and 2005, surface ozone concentrations were measured with portable ozone monitors at multiple locations in and around Yosemite National Park. The goal of these measurements was to obtain a comprehensive survey of ozone within Yosemite, which will help modelers predict and interpolate ozone concentrations in remote locations and complex terrain. The data from the portable monitors were combined with concurrent and historical data from two long-term monitoring stations located within the park (Turtleback Dome and Merced River) and previous investigations with passive samplers. The results indicate that most sites in Yosemite experience roughly similar ozone concentrations during well-mixed daytime periods, but dissimilar concentrations at night. Locations that are well exposed to the free troposphere during evening hours tend to experience higher (and more variable) nocturnal ozone concentrations, resulting in smaller diurnal variations and higher overall ozone exposures. Locations that are poorly exposed to the free troposphere during nocturnal periods tend to experience very low evening ozone, yielding larger diurnal variations and smaller overall exposures. Ozone concentrations are typically highest for the western and southern portions of the park and lower for the eastern and northern regions, with substantial spatial and temporal variability. Back-trajectory analyses suggest that air with high ozone concentrations at Yosemite often originates in the San Francisco Bay Area and progresses through the Central California Valley before entering the park.  相似文献   

7.
The meteorological conditions exert large impacts on ozone concentrations, and may mask the long-term trends in ozone concentrations resulting from precursor emissions. Estimation of long-term trends of ozone concentrations due to the changes in precursor emissions is important for corresponding control strategy. Multiple linear regression (method I), multilayer perceptron (MLP) neural network (method II) and Komogorov-Zurbenko (KZ) filter method plus MLP methodology (method III), are used to estimate the meteorologically adjusted long-term trends of daily maximum ozone concentrations by removing the masking effects of meteorological conditions in this study. The daily maximum ozone concentrations and relative meteorological variables were extracted from six air-monitoring stations in Taipei area from 1994 to 2001. The data collected during 1994–2000 period were used as modeling set and utilized to estimate the meteorologically adjusted trends, and the data of 2001 were used as the validation data. The meteorologically adjusted trends of ozone for these three methods were calculated and compared. The results show that both MLP and KZ filter +MLP models are more suitable than multiple linear regression for estimating the long-term trends of ozone in Taipei, Taiwan. The long-term linear trends of meteorologically adjusted ozone concentrations due to the precursor emissions show an increase trend at all stations, and the percent changes per year range from 1.0% to 2.25% during the modeling period in Taipei area.  相似文献   

8.
The objective of this study is to estimate the spatial variability of tropospheric ozone in an area using a simple model. The area in this case was applied in the western Mediterranean basin. The study period was from May to September in 2003 and 2004.A multiple linear regression between ozone concentrations, altitude and distance to the precursor sources in a fluvial basin can be used to estimate ozone values at other sites during the warmer seasons. The correlation coefficients obtained with 2-week ozone values measured at five points with a passive sampling technique were high enough to apply the model (0.77<r<0.99).To verify the model, ozone concentrations were measured with passive samplers and continuous analyzers at some selected sites, and the values were compared with the estimated concentration. The results of the validations were satisfactory, in 80% of the measurements the estimated levels differ from measured less than 20%, which is included in the bound error for the type of sampler used in this study.  相似文献   

9.
Twenty-four to forty-eight-hour ozone air quality forecasts are increasingly being used in metropolitan areas to inform the public about potentially harmful air quality conditions. The forecasts are also behind "ozone action day" programs in which the public and private sectors are encouraged or mandated to alter activities that contribute to the formation of ground-level ozone. Presented here is a low-cost application of the Urban Airshed Model (UAM), an Eulerian 3-dimensional photochemical-transport grid model for generating next-day peak ozone concentration forecasts. During the summer of 1997, next-day peak ozone concentrations in Atlanta, GA, were predicted both by a team of eight forecasters and by the Urban Airshed Model in Forecast Mode (UAM-FM). Results are presented that compare the accuracy of the team and the UAM-FM. The results for the summer of 1997 indicate that the UAM-FM may be a better predictor of peak ozone concentrations when concentrations are high (> 0.095 ppmv), and the team may be a better predictor of ozone concentrations when concentrations are low (< or = 0.095 ppmv). The UAM-FM is also discussed in the context of other forecasting tools, primarily linear regression models and a no-skill, persistence-based technique.  相似文献   

10.
Abstract

Many large metropolitan areas experience elevated concentrations of ground-level ozone pollution during the summertime “smog season”. Local environmental or health agencies often need to make daily air pollution forecasts for public advisories and for input into decisions regarding abatement measures and air quality management. Such forecasts are usually based on statistical relationships between weather conditions and ambient air pollution concentrations. Multivariate linear regression models have been widely used for this purpose, and well-specified regressions can provide reasonable results. However, pollution-weather relationships are typically complex and nonlinear—especially for ozone—properties that might be better captured by neural networks. This study investigates the potential for using neural networks to forecast ozone pollution, as compared to traditional regression models. Multiple regression models and neural networks are examined for a range of cities under different climate and ozone regimes, enabling a comparative study of the two approaches. Model comparison statistics indicate that neural network techniques are somewhat (but not dramatically) better than regression models for daily ozone prediction, and that all types of models are sensitive to different weather-ozone regimes and the role of persistence in aiding predictions.  相似文献   

11.
ABSTRACT

Twenty-four to forty-eight-hour ozone air quality forecasts are increasingly being used in metropolitan areas to inform the public about potentially harmful air quality conditions. The forecasts are also behind “ozone action day” programs in which the public and private sectors are encouraged or mandated to alter activities that contribute to the formation of ground-level ozone. Presented here is a low-cost application of the Urban Airshed Model (UAM), an Eulerian 3-dimensional photochemical-transport grid model for generating next-day peak ozone concentration forecasts. During the summer of 1997, next-day peak ozone concentrations in Atlanta, GA, were predicted both by a team of eight forecasters and by the Urban Airshed Model in Forecast Mode (UAM-FM). Results are presented that compare the accuracy of the team and the UAM-FM. The results for the summer of 1997 indicate that the UAM-FM may be a better predictor of peak ozone concentrations when concentrations are high (> 0.095 ppmv), and the team may be a better predictor of ozone concentrations when concentrations are low (< 0.095 ppmv). The UAM-FM is also discussed in the context of other forecasting tools, primarily linear regression models and a no-skill, persistence-based technique.  相似文献   

12.
The use of mechanical monitors and passive samplers has made it possible to assess concentrations of ozone over wide areas and to develop air quality standards, like AOT40 and SUM60. Monitored ozone data and AOT40 and SUM60 are also used to predict ozone injury on local and regional scales. The data and the standards do not include or account for environmental and biological variables that affect ozone uptake and plant injury. Ground proofing via vegetation surveys must be done to verify and validate plant injury predictions. If this is not done, then the standards have no biological significance and are only exercises in air quality assessment.  相似文献   

13.
Prediction of ambient ozone concentrations in urban areas would allow evaluation of such factors as compliance and noncompliance with EPA requirements. Though ozone prediction models exist, there is still a need for more accurate models. Development of these models is difficult because the meteorological variables and photochemical reactions involved in ozone formation are complex. In this study, we developed a neural network model for forecasting daily maximum ozone levels. We then compared the neural network's performance with those of two traditional statistical models, regression, and Box-Jenkins ARIMA. The neural network model for forecasting daily maximum ozone levels is different from the two statistical models because it employs a pattern recognition approach. Such an approach does not require specification of the structural form of the model. The results show that the neural network model is superior to the regression and Box-Jenkins ARIMA models we tested.  相似文献   

14.
A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas. The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   

15.
California's Phase 2 Reformulated Gasoline (CaRFG), introduced early in 1996, represents an important step toward attainment of ozone standards. Studies of vehicle emissions and ambient air quality data have reported substantial reductions of ozone precursors due to CaRFG. This study uses daily measurements of regional ozone and meteorology to estimate the effect of CaRFG on ozone concentrations in three areas of California. In each area, a regression model was used to partially account for the daily effects of meteorology on area-wide ozone maxima for May-October. The statistical models are based on combinations of air temperature aloft (approximately 5000 ft), surface air temperatures, and surface wind speeds. Estimated ozone benefits were attributed to CaRFG after accounting for meteorology, which improved the precision of the estimates by approximately 37-57% based on a resampling analysis. The ozone benefits were calculated as the difference in ozone times the proportion of the reductions of hydrocarbons and nitrogen oxides attributed to CaRFG by the best available emission inventories. Ozone benefits attributed to CaRFG (with approximately 90% confidence) are 8-13% in the Los Angeles area, -2-6% in the San Francisco Bay area overall with greater benefits in two major subregions, and 3-15% in the Sacramento area.  相似文献   

16.
In recent years, ambient measurements of hourly ozone precursor concentrations, namely speciated and total nonmethane organic compounds (NMOCs), have become available through the Photochemical Assessment Monitoring Stations (PAMS) program. Prior to this, NMOCs were measured in the central business district using a canister to obtain the 3-hr integrated sample for the 6:00 a.m.-9:00 a.m. period. Such sampling had been carried out annually for nearly a decade at three locations in the New York City metropolitan area. The intent of these measurements, along with measurements of the other ozone precursor, NO(x), was to provide an understanding of ozone formation and the emissions loading and mix in the urban area. The analysis of NMOC and NO(x) measurements shows a downward trend in the case of NMOC. In addition, we compared the canister-based NMOC concentrations with data obtained from the PAMS program for the 6:00 a.m.-9:00 a.m. period. Analysis of the NMOC concentrations reveals poor spatial correlation between the various monitors, reflecting the effect of localized emissions. This suggests that NMOC measurements made at a single location cannot be viewed as representative of the entire region. On the other hand, correlations were found to be higher among the NO(x) monitors, indicating the commonality of emission  相似文献   

17.
A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

18.
To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.  相似文献   

19.
A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.  相似文献   

20.
ABSTRACT

A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号