首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs.  相似文献   

2.
Plant-promoted pyrene degradation in soil   总被引:2,自引:0,他引:2  
A study was conducted to investigate the capability of nine plant species to promote the degradation of pyrene in soil. The test method allowed for analysis of the entire sample of soil. More pyrene was degraded in the presence of roots of all nine species than in unplanted soil. Within approximately 8 weeks, as much as 74% of the pyrene disappeared from vegetated soil compared to 40% or less from unplanted soil. The data suggest that some of the test species may be especially useful for phytoremediation of soils contaminated with PAHs.  相似文献   

3.
Accumulation of phenanthrene and pyrene in rhizosphere soil   总被引:14,自引:0,他引:14  
A study was conducted to determine PAH concentrations in the rhizosphere of plants grown in soil containing phenanthrene or pyrene. The rhizosphere of tall fescue and wheat grown in sterile soil contained 4-5-fold higher pyrene concentrations than unplanted soil. The rhizosphere of several plant species grown in non-sterile soil temporarily contained appreciably more phenanthrene or pyrene than unplanted soil, but those PAHs were degraded with time. The data suggest that plants accumulate such hydrophobic compounds in the rhizosphere after facilitating their transport toward the roots.  相似文献   

4.
In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils.  相似文献   

5.
Hong L  Luthy RG 《Chemosphere》2008,72(2):272-281
Polyoxymethylene (POM) is a polymeric material used increasingly in passive sampling of hydrophobic organic contaminants such as PAHs and PCBs in soils and sediments. In this study, we examined the sorption behavior of 12 PAH compounds to POM and observed linear isotherms spanning two orders of magnitude of aqueous concentrations. Uptake kinetic studies performed in batch systems for up to 54 d with two different volume ratios of POM-to-aqueous phase were evaluated with coupled diffusion and mass transfer models to simulate the movement of PAHs during the uptake process and to assess the physicochemical properties and experimental conditions that control uptake rates. Diffusion coefficients of PAHs in POM were estimated to be well correlated with diffusants' molecular weights as D(POM) proportional, variant(MW)(-3), descending from 2.3 x 10(-10) cm(2) s(-1) for naphthalene to 7.0 x 10(-11) cm(2) s(-1) for pyrene. The uptake rates for PAHs with log K(ow)<5.8 were controlled by the POM phase and the hydrophobicity of PAH compounds. For more hydrophobic PAH compounds, the aqueous boundary layer played an increasingly important role in determining the overall mass transfer rate. The POM partitioning technique was demonstrated to agree well with two other procedures for measuring PAH soil-water distribution coefficients in oil-soot (lampblack) containing soil samples.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) were determined in soil and vegetation following a large scale chemical fire involving 10,000 ton of polypropylene. In comparison with sites outside the plume from the fire, PAH concentrations were elevated in grass shoots (by up to 70-fold) and in soil (by up to 370-fold). The pattern of PAH dispersion under the plume was dependent on the physical-chemical properties of individual PAHs. The lighter, least hydrophobic PAHs were dispersed into the environment at greater distances than heavier, more hydrophobic PAHs. At the most distant sampling point (4.5 km) under the plume, the low molecular weight PAHs were still considerably elevated in vegetation samples compared to control sites. Dispersion appeared to be regulated by the compounds partitioning between the vapour and particulate phase, with dry particulate deposition occurring closer to the fire source than gaseous deposition. For all PAHs, the fire resulted in greater contamination of soils compared to grasses, with the relative ratio of plant/soil contamination decreasing as hydrophobicity increased.  相似文献   

7.
The biodegradation of polycyclic aromatic hydrocarbons in microecosystems containing long-term contaminated soil was investigated. Soil was contaminated by different chemicals, including PAHs since World War II. Aging of the soil was expected to act as a principal factor limiting biodegradation. Half of the microecosystems contained ryegrass (Lolium perenne) and long-term selected natural soil microflora originally present in contaminated soil. The others contained contaminated soil with natural microflora only. Half of the microecosystems in each parallel experiment was fertilised with N-P-K fertiliser. Cultivation was carried out at 12 and 18 months in a greenhouse with a natural photoperiod and the ability to degrade 15 chosen PAH was investigated. For analysis, the soil from each pot was divided into three horizontal layers for mutual comparison among layers and each layer was further divided into four equal samples. Soil extracts were analysed using HPLC. After a one-year-cultivation period the content of the monitored PAHs declined to 50%. Mostly, there were no significant differences between the microecosystems. Best degraded were fluoranthene and pyrene, which were the major contaminants present in original soil. Also, other compounds were successfully degraded, even benzo[a]pyrene and benzo[ghi]perylene. Dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene were the only PAHs, examined that showed no significant degradation. Although some differences between the soil layers were detected, no conclusive trends could be found. However, significantly lower concentrations of PAHs were determined mostly in the bottom layer of the analysed profiles. In vegetated microecosystems the decline of PAHs concentrations was more remarkable after 18 months cultivation.  相似文献   

8.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

9.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

10.
Atrazine and simazine degradation in Pennisetum rhizosphere   总被引:16,自引:0,他引:16  
The ability of rhizosphere of four plant species to promote the degradation of charcoal-fixed atrazine and simazine in cement blocks of a long-term contaminated soil when mixed with a normal soil at 1:1 ratio was tested. Of the four selected plants viz., rye grass (Lolium perenne), tall fescue (Festuca arundinacae), Pennisetum (Pennisetum clandestinum) and a spring onion (Allium sp.) used in this study, only P. clandestinum was able to survive in herbicide contaminated soil while other plants died within few days after germination/transplanting. Both atrazine and simazine were degraded at a faster rate in contaminated soil planted to P. clandestinum than in unplanted soil. Within 80 days, nearly 45% and 52% of atrazine and simazine, respectively, were degraded in soil planted to P. clandestinum while only 22% and 20% of the respective herbicide were degraded in the unplanted soil. During 80-day experimental period, both microbial biomass and soil dehydrogenase activity were significantly increased (7-fold) in soil planted to P. clandestinum over that in unplanted soil. The suspension of contaminated rhizosphere soil, planted to P. clandestinum exhibited an exceptional capability to degrade both atrazine (300 microg) and simazine (50 microg) in a mineral salts medium over that of non-rhizosphere soil suspension. Results indicate that P. clandestinum, a C4 plant, may be useful for remediation of soils contaminated with atrazine and simazine.  相似文献   

11.
This study examined the effect of regular tillage and cropping on the dissipation rate of PAHs in contaminated soil. Lysimeters were placed under natural climatic conditions for 2 years and designed to measure the concentration of PAHs in soil and leachates and their toxicity. The soil initially contained 2077 microg PAHs g(-1). The largest decrease in PAHs concentration occurred during the first 6 months. No further significant decrease was observed after this time. The surface soil layer always contained significantly less PAHs than the deeper layer, regardless of the treatments. Less than 8.4 x 10(-8)% of the PAH initially present in the soil (e.g. less or equal to 33 microg PAHs per lysimeter) were leached from the soils during the experiment and the leachates presented no toxicity (as measured by the Microtox test). The toxicity of the soils decreased with time and was significantly lower on the cropped soil compared to the other treatments, despite the residual concentration of PAHs being the highest in this soil. This study demonstrated that the dissipation rates of PAHs were slow after using natural attenuation even when tillage and cropping were performed at the soil surface.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings.  相似文献   

13.

Electrokinetic (EK) remediation technology can enhance the migration of reagents to soil and is especially suitable for in situ remediation of low permeability contaminated soil. Due to the long aging time and strong hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) from historically polluted soil, some enhanced reagents (oxidant, activator, and surfactant) were used to increase the mobility of PAHs, and remove and degrade PAHs in soil. However, under the electrical field, there are few reports on the roles and combined effect of oxidant, activator, and surfactant for remediation of PAHs historically contaminated soil. In the present study, sodium persulfate (PS, oxidant, 100 g L?1) or/and Tween 80 (TW80, surfactant, 50 g L?1) were added to the anolyte, and citric acid chelated iron(II) (CA-Fe(II), activator, 0.10 mol L?1) was added to catholyte to explore the roles and contribution of enhanced reagents and combined effect on PAHs removal in soil. A constant voltage of 20 V was applied and the total experiment duration was 10 days. The results showed that the removal rate of PAHs in each treatment was PS + CA-Fe(II) (21.3%) > PS + TW80 + CA-Fe(II) (19.9%) > PS (17.4%) > PS + TW80 (11.4%) > TW80 (8.1%) > CK (7.5%). The combination of PS and CA-Fe(II) had the highest removal efficiency of PAHs, and CA-Fe(II) in the catholyte could be transported toward anode via electromigration. The addition of TW80 reduced the electroosmotic flow and inhibited the transport of PS from anolyte to the soil, which decreased the removal of PAHs (from 17.4 to 11.4% with PS, from 21.3 to 19.9% with PS+CA-Fe(II)). The calculation of contribution rates showed that PS was the strongest enhancer (3.3~9.9%), followed by CA-Fe(II) (3.9~8.5%) (with PS), and the contribution of TW80 was small and even negative (?1.4~0.6%). The above results indicated that the combined application of oxidant and activator was conducive to the removal of PAHs, while the addition of surfactant reduced the EOF and the migration of oxidant and further reduced the PAHs removal efficiency. The present study will help to further understand the role of enhanced reagents (especially surfactant) during enhanced EK remediation of PAHs historically contaminated soil.

  相似文献   

14.
The effects were studied of short-term heating of contaminated soil and its soaking in an organic solvent on the subsequent biodegradation of PAHs. In a clayey dredged sludge with a high organic-matter content (12%), heating at 120°C for one hour increased the degree of degradation after 21 days of an aged PAH contamination from 9.5 ± 0.7% to 27 ± 5%. Lower temperatures resulted in smaller increases. The observed increase in biodegradation is caused by either transfer of PAHs from sorption sites with low desorption rates to those with high ones or transformation of slow-sorption sites into fast-sorption ones. Soaking of the above sludge in a 4:1 (v/vj acetone-water mixture increased the degree of degradation from 9.5 ± 0.7% to 20.4 ± 1.4%, probably as a result of dissolution of the PAHs in the pore liquid during soaking. Thermal pretreatment of a contaminated sandy soil with a low organic-matter content showed no significant effect on the degradation of aged PAHs. Soaking of the sandy soil increased the degradation of only PAHs of high molecular weight, namely from 24 ± 5% to 48 ± 7%.  相似文献   

15.
Chen CS  Rao PS  Delfino JJ 《Chemosphere》2005,60(11):39-1582
The cosolvent-induced dissolution of polynuclear aromatic hydrocarbons (PAHs) from contaminated soil caused by oxygenated fuel spills was studied. Oxygenated fuel induces a solvent flushing effect on the contaminated soil due to the high content of oxygenated compounds (i.e., methanol, ethanol, and methyl tert butyl ether (MTBE)). The miscible displacement techniques were applied to evaluate the increased potential for secondary contamination in an impacted site. Significant solubility enhancement of the 18 PAHs monitored during fuel spill simulation and cosolvent flushing is clearly evident when compared to normal water dissolution. The breakthrough concentration profile for each PAH constituent was integrated over the cumulative effluent volume (i.e., the zeroth moment) to determine the total PAH mass removed during the experiment. The removal efficiency of PAHs ranges from 46.6% to 99.9% in three oxygenated fuels (i.e., M85, E85, and oxygenated gasoline) during the fuel spill. Several factors including hydrophobicity of compounds, nonequilibrium dissolution due to nonuniform coal tar distribution, and heterogeneous media properties affect the oxygenated compound-induced dissolution process. This study provides a basis to predict the facilitated transport of hydrophobic organic compounds from subsurface environment due to the cosolvent effects of oxygenated fuels.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity of decontamination of polluted soils with PAHs using the sequence extraction-electrochemical treatment: extraction of PAHs from the soil with surfactant followed by electrochemical degradation of the liquid collected. Several PAHs (anthracene, benzo[a]pyrene, and phenanthrene) have been used as model compounds since such PAHs are found in high concentrations in contaminated environmental samples. Due to their hydrophobic nature, soil extraction has been limited. In this work, the use of six surfactants, Brij 35, Merpol, Tergitol, Tween 20, Tween 80 and Tyloxapol, has been evaluated on the PAH extraction from a model soil such as kaolin. Furthermore, the electrochemical degradation of PAHs with the surfactant that gave the best result was investigated working with neat solutions. The electrochemical treatment of these solutions was carried out in two electrochemical cells with different working volumes, 0.4 and 1.5l, and electrode material (graphite or titanium). Near complete degradation was reached for all the experiments in both cells.  相似文献   

17.
The purpose of this study was to investigate the effect of temperature on the release of polycyclic aromatic hydrocarbons (PAHs) from aged contaminated soil. The release of fluorene, phenanthrene, anthracene, fluoranthene and pyrene at 7, 15, 18 and 23 degrees C was studied using a column leaching method with a hydraulic retention time of 0.5 h. As the temperature declined from 23 to 7 degrees C the concentrations decreased by a factor of 11-12 for all the studied compounds except for anthracene, which only decreased by a factor 7. Rate constants at maximum release rate at the four studied temperatures were assessed. From temperature dependence studies, apparent activation energies of desorption, E*(des), were calculated. E*(des)-values appeared to be in the range of 105-137 kJ mol(-1) for the studied PAHs and increased with the LeBas molar volume of the compounds. The increase of E*(des) with increased molecular size indicates stronger sorption with increased hydrophobicity of the compounds.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are of environmental concern because many PAHs are either carcinogens or potential carcinogens. Petroleum products are a major source of PAHs. The occurrence of PAH contamination is widespread and novel treatment technologies for the remediation of contaminated soils are necessary.Ozone has been found to be extremely useful for the degradation of PAHs in soils. For these compounds, the reaction with molecular ozone appears to be the more important degradation pathway. Greater than 95% removal of phenanthrene was achieved with an ozonation time of 2.3 h at an ozone flux of 250 mg h−1. After 4.0 h of treatment at an ozone flux of 600 mg h−1, 91 % of the pyrene was removed. We have also found that the more hydrophobic PAHs (e.g. chrysene) react more slowly than would be expected on the basis of their reactivity with ozone, suggesting that partitioning of the contaminant into soil organic matter may reduce the reactivity of the compound. Even so, after 4 h of exposure to ozone, the chrysene concentration in a contaminated Metea soil was reduced from 100 to 50 mg kg−1 .Ozone has been found to be readily transported through columns packed with a number of geological materials, including Ottawa sand, Metea soil, Borden aquifer material and Wurtsmith aquifer material. All of these geological materials exerted a limited (finite) ozone demand, i.e. the rate of ozone degradation in soil columns is very slow after the ozone demand is met. Moisture content was found to increase the ozone demand, most likely owing to the dissolution of gaseous ozone into the pore water. As once the initial ozone demand is met, little degradation of ozone is observed, it should be possible to achieve ozone penetration to a considerable distance away from the injection well, suggesting that in-situ ozonation is a feasible means of treating uncontaminated unsaturated soils. This is substantiated by two field studies where in-situ ozonation was apparently successful at remediating the sites.  相似文献   

19.
Gong Z  Alef K  Wilke BM  Li P 《Chemosphere》2005,58(3):291-298
This study reports on the feasibility of remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soils using sunflower oil, an environmentally-friendly solvent. Batch experiments were performed to test the influence of oil/soil ratio on the remediation of PAH contaminated soil, and to test the mass transfer behaviors of PAHs from soil to oil. An empirical model was employed to describe the kinetics of PAH dissolution and to predict equilibrium concentrations of PAHs in oil. PAH containing oil was regenerated using active carbon. Results show that dissolution of PAHs from a Manufactured Gas Plant (MGP) soil at oil/soil ratios of one or two were almost the same. Nearly all PAHs (81-100%) could be removed by sunflower oil dissolution. Mass transfer coefficients for low molecular PAHs namely fluoranthene, phenanthrene and anthracene were one or two orders of magnitude higher than those for high molecular PAHs with 4-6 rings. Ninety milliliters of PAH containing oil could be regenerated by 10 g active carbon in a batch reactor. Such a remediation procedure indicates that sunflower oil is a promising agent for the removal of PAHs from MGP soils. However, further research is required before the method can be used for in situ remediation of contaminated sites.  相似文献   

20.
An experiment was conducted to distinguish priming effects from the effects of phytoremediation of a creosote-polluted soil. The concentration of 13 polycyclic aromatic hydrocarbons (PAHs), and their combined soil toxicity (using four bioassays), was determined on recently excavated, homogenized soil and on such soil subjected to a time-course phytoremediation experiment with lucerne. The results showed a high priming effect, with minor positive and synergistic effects of planting and fertilization on PAH degradation rates. At the end of the experiment, PAH degradation reached 86% of the initial 519 mg PAHs kg(-1). Two of the four toxicity tests (bioluminescence inhibition and ostracod growth inhibition) corroborated the chemical data for residual PAHs, and indicated a significant reduction in soil toxicity. We conclude that priming effects can easily surpass treatment effects, and that an unintentional pre-incubation that ignores these effects can jeopardize the full quantitative assessment of in situ bioremediation of contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号