首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The goal of this research was to evaluate the relative effects of root density, freeze/thaw cycling, and soil properties on the erodibility and critical shear stress of streambanks. The erodibility and critical shear stress of rooted bank soils were measured in situ at 25 field sites using a submerged jet test device; several soil, vegetation, and stream chemistry characteristics shown to influence soil erosion were also assessed. Multiple linear regression analysis was conducted to determine those factors that most influenced streambank erodibility and the relative impact of riparian vegetation. Study results indicated that soil erosion is a complex phenomenon that depends primarily on soil bulk density. Freeze/thaw cycling, soil antecedent moisture content, the density of roots with diameters of 2 to 20 mm, soil texture, and the interaction of soil pore water and stream water had a significant impact on soil erodibility and critical shear stress, depending on soil type. Riparian vegetation had multiple significant effects on soil erodibility. In addition to reducing soil erodibility through root reinforcement, the streamside vegetation affected soil moisture and altered the local microclimate, which in turn affected freeze/thaw cycling (FTC). This study represents the first in situ testing of the erodibility of vegetated streambanks and provides a quantitative analysis on the effects of vegetation on streambank erosion, relative to other soil physical and chemical parameters.  相似文献   

2.
Human alterations to the Iowa landscape, such as elimination of native vegetation for row crop agriculture and grazing, channelization of streams, and tile and ditch drainage, have led to deeply incised channels with accelerated streambank erosion. The magnitude of streambank erosion and soil loss were compared along Bear Creek in central Iowa. The subreaches are bordered by differing land uses, including reestablished riparian forest buffers, row crop fields, and continuously grazed riparian pastures. Erosion pins were measured from June 1998 to July 2002 to estimate the magnitude of streambank erosion. Total streambank soil loss was estimated by using magnitude of bank erosion, soil bulk density, and severely eroded bank area. Significant seasonal and yearly differences in magnitude of bank erosion and total soil loss were partially attributed to differences in precipitation and associated discharges. Riparian forest buffers had significantly lower magnitude of streambank erosion and total soil loss than the other two riparian land uses. Establishment of riparian forest buffers along all of the nonbuffered subreaches would have reduced stream‐bank soil loss by an estimated 77 to 97 percent, significantly decreasing sediment in the stream, a major water quality problem in Iowa.  相似文献   

3.
Variation in root density along stream banks   总被引:1,自引:0,他引:1  
While it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled. The riparian buffers varied from short turfgrass to mature riparian forests, representing a range of vegetation types. Root length density (RLD) with depth and aboveground vegetation density were measured. The sites were divided into forested and herbaceous groups and differences in root density were evaluated. At the herbaceous sites, very fine roots (diameter < 0.5 mm) were most common and more than 75% of all roots were concentrated in the upper 30 cm of the stream bank. Under forested vegetation, fine roots (0.5 mm < diameter < 2.0 mm) were more common throughout the bank profile, with 55% of all roots in the top 30 cm. In the top 30 cm of the bank, herbaceous sites had significantly greater overall RLD than forested sites (alpha = 0.01). While there were no significant differences in total RLD below 30 cm, forested sites had significantly greater concentrations of fine roots, as compared with herbaceous sites (alpha = 0.01). As research has shown that erosion resistance has a direct relationship with fine root density, forested vegetation may provide better protection against stream bank erosion.  相似文献   

4.
he influence of woody vegetation on the reliability of a sandy levee was investigated using field data in seepage and slope stability analyses. Field data were collected from selected sites within a 10-km segment of a channel levee on the Sacramento River near Elkhorn, California. Root architecture and distribution were determined using the profile-wall method in which root cross sections were exposed in the vertical wall of an excavated trench. Transects running both parallel and perpendicular to the crest of the levee were excavated at six sites. Each site was dominated by different plant species: five sites were adjacent to trees or woody shrubs, while one supported only herbaceous growth. Lateral plant roots were primarily restricted to, and modified, the near-surface soil horizons to a depth of approximately 1 meter. Root area ratios (RARs) did not exceed 2.02 percent and generally decreased exponentially with depth. At depths greater than 20 cm, mean RARs for sites dominated by wood species were not significantly different from the mean RAB for the herbaceous site. No open voids clearly attributable to plant roots were observed. Roots reinforced the levee soil and increased shear resistance in a measurable manner. Infinite slope and circular arc stability analyses were performed on the landward and riverward slopes under different hydraulic loading conditions. Infinite slope analyses indicated increasing root area ratio from 0.01 percent to 1 percent increased the factor of safety from less than one to more than seven. Circular arc analyses indicated that even the lower measured root concentrations sufficed to increase safety factors for arcs with maximum depths of about 1 m from less than one to about 1.2. Our findings suggest that allowing woody shrubs and small trees on levees would provide environmental benefits and would enhance structural integrity without the hazards associated with large trees such as wind-throwing.  相似文献   

5.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   

6.
Sass, Christopher K. and Tim D. Keane, 2012. Application of Rosgen’s BANCS Model for NE Kansas and the Development of Predictive Streambank Erosion Curves. Journal of the American Water Resources Association (JAWRA) 48(4): 774‐787. DOI: 10.1111/j.1752‐1688.2012.00644.x Abstract: Sedimentation of waterways and reservoirs directly related to streambank erosion threatens freshwater supply. This study sought to provide a tool that accurately predicts annual streambank erosion rates in NE Kansas. Rosgen (2001, 2006) methods were employed and 18 study banks were measured and monitored from 2007 through 2010 (May‐June). Bank profiles were overlaid to calculate toe pin area change due to erosional processes. Streambanks experienced varied erosion rates from similar Bank Erosion Hazard Index (BEHI)‐Near Bank Stress (NBS) combinations producing R2 values of 0.77 High‐Very High BEHI rating and 0.75 Moderate BEHI rating regarding predictive erosion curves for NE Kansas. Moderate ratings demonstrated higher erosion rates than High‐Very High ratings and BEHI trend lines intersected at lower NBS ratings, suggesting a discrepancy in the fit of the model to conditions in the NE Kansas region. BEHI model factors were evaluated and assessed for additional influences exerted in the region. Woody vegetation adjacent to the stream seemed to provide the most variation in erosion rates. This study’s findings allowed us to calibrate and modify the existing BEHI model according to woody vegetation occurrence levels along streambanks with high clay content. Modifications regarding vegetation occurrence of the BEHI model was completed and the results of these modifications generated new curves resulting in R2 values of 0.84 High‐Very High BEHI and 0.88 Moderate BEHI ratings.  相似文献   

7.
ABSTRACT: Combinations of vegetation and structure were applied to control streambank erosion along incised stream channels in northwest Mississippi. Eleven sites along seven channels with contributing drainage areas ranging from 12–300 km2 were used for testing. Tested configurations included eroding banks protected by vegetation alone, vegetation with structural toe protection, vegetation planted on re-graded banks, and vegetation planted on regraded banks with toe protection. Monitoring continued for up to 10 years, and casual observation for up to 18 years. Sixteen woody and 13 nonwoody species were tested. Native woody species, particularly willow, appear to be best adapted to stream-bank environments. Sericea lespedeza and Alamo switchgrass were the best nonwoody species tested. Vegetation succeeded in reaches where the bed was not degrading, competition from kudzu was absent, and bank slopes were stabilized by grading or toe protection. Natural vegetation invaded planted and unplanted stable banks composed of fertile soils. Designs involving riprap toe protection in the form of a longitudinal dike and woody vegetation appeared to be most cost-effective. The exotic vine kudzu presents perhaps the greatest long-term obstacle to restoring stable, functional riparian zones along incised channels in our region. (KEY TERMS: vegetation; streambank protection; bioengineering; stream restoration; channel incision; riparian zone.)  相似文献   

8.
In some watersheds, streambanks are a source of two major pollutants, phosphorus (P) and sediment. P originating from both uplands and streambanks can be transported and stored indefinitely on floodplains, streambanks, and in closed depressions near the stream. The objectives of this study were to (1) test the modified streambank erosion and instream P routines for the Soil and Water Assessment Tool (SWAT) model in the Barren Fork Creek watershed in northeast Oklahoma, (2) predict P in the watershed with and without streambank‐derived P, and (3) determine the significance of streambank erosion P relative to overland P sources. Measured streambank and channel parameters were incorporated into a flow‐calibrated SWAT model and used to estimate streambank erosion and P for the Barren Fork Creek using modified streambank erosion and instream P routines. The predicted reach‐weighted streambank erosion was 40 kg/m vs. the measured 42 kg/m. Streambank erosion contributed 47% of the total P to the Barren Fork Creek and improved P predictions compared to observed data, especially during the high‐flow events. Of the total P entering the stream system, approximately 65% was removed via the watershed outlet and 35% was stored in the floodplain and stream system. This study successfully applied the SWAT model's modified streambank erosion and instream P routines and demonstrated that streambank‐derived P can improve P modeling at the watershed scale. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

9.
ABSTRACT: Intact riparian zones are the product of an incredibly complex multitude of linkages between the geomorphic, hydrologic, and biotiè features of the ecosystem. Land‐use activities that sever or alter these linkages result in ecosystem degradation. We examined the relationship between riparian vegetation and channel morphology by sampling species composition and herbaceous root biomass in incised (down‐cut and widened) versus unincised (intact) sections of unconstrained reaches in three headwater streams in northeastern Oregon. Incision resulted in a compositional shift from wetland‐obligate plant species to those adapted to drier environments. Root biomass was approximately two times greater in unincised sections than incised sections and decreased with depth more rapidly in incised sections than in unincised sections. Total root biomass ranged from 2,153 g m‐2 to 4,759 g m‐2 in unincised sections and from 1,107 g m‐2 to 2,215 g m‐2 in incised sections. In unincised sections less than 50 percent of the total root biomass was found in the top 10 cm, with approximately 20 percent in successive 10‐cm depth increments. In contrast, incised sections had greater than 60 percent of the total root biomass in the top 10 cm, approximately 15 percent in the 10 to 20 cm depth, less than 15 percent in the 20 to 30 cm depth, and less than 10 percent in the 30 to 40 cm depth. This distribution of root biomass suggests a positive feedback between vegetation and channel incision: as incision progresses, there is a loss of hydrologic connectivity, which causes a shift to a drier vegetation assemblage and decreased root structure, resulting in a reduced erosive resistance capacity in the lower zone of the streambank, thereby allowing further incision and widening.  相似文献   

10.
A comprehensive streambank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective stresses while estimating bank erosion. The streambank erosion model was tested for performance in the Cedar Creek watershed in north‐central Texas where streambank erosion rates are high. A Rapid Geomorphic field assessment (RAP‐M) of the Cedar Creek watershed was done adopting techniques developed by the Natural Resources Conservation Service (NRCS), and the stream segments were categorized into various severity classes. Based on the RAP‐M field assessment, erosion pin sites were established at seven locations within the severely eroding streambanks of the watershed. A Monte Carlo simulation was carried out to assess the sensitivity of different parameters that control streambank erosion such as critical shear stress, erodibility, weathering depth, and weathering duration. The sensitive parameters were adjusted and the model was calibrated based on the bank erosion severity category identified by the RAP‐M field assessment. The average observed erosion rates were in the range 25‐367 mm year?1. The SWAT model was able to reasonably predict the bank erosion rates within the range of variability observed in the field (R2 = 0.90; E = 0.78). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

11.
ABSTRACT: Incised channels are caused by an imbalance between sediment transport capacity and sediment supply that alters channel morphology through bed and bank erosion. Consistent sequential changes in incised channel morphology may be quantified and used to develop relationships describing quasi‐equilibrium conditions in these channels. We analyzed the hydraulic characteristics of streams in the Yazoo River Basin, Mississippi in various stages of incised channel evolution. The hydraulic characteristics of incising channels were observed to follow the sequence predicted by previous conceptual models of incised channel response. Multiple regression models of stable slopes in quasi‐equilibrium channels that have completed a full evolutionary sequence were developed. These models compare favorably with analytical solutions based on the extremal hypothesis of minimum stream power and empirical relationships from other regions. Appropriate application of these empirical relationships may be useful in preliminary design of stream rehabilitation strategies.  相似文献   

12.
Many bank erosion models have limitations that restrict their use in wildland settings. Scientists and land managers at the Sequoia National Forest would like to understand the mechanisms and rates of streambank erosion to evaluate management issues and post‐wildfire effects. This study uses bank erosion hazard index (BEHI) and near‐bank stress (NBS) methods developed in Rosgen (2006 Watershed Assessment of River Stability and Sediment Supply [WARSSS]) for predicting streambank erosion in a geographic area that is dominated by colluvium and in which streambank erosion modeling has not been previously evaluated. BEHI evaluates bank susceptibility to erosion based on bank angle, bank and bankfull height, rooting depth and density, surface protection, and stratification of material within the banks. NBS assesses energy distribution against the bank measured as a ratio of bankfull near‐bank maximum depth to mean bankfull depth. We compared BEHI classes and NBS to actual bank erosion measured from 2008 to 2012. This index predicted streambank erosion with clear separation among BEHI ratings with R2 values of 0.76 for extreme, 0.37 for high/very high, 0.49 for moderate, and 0.70 for low BEHI. The relationships between measured erosion and BEHI extend the application of BEHI/NBS to a new region where they can inform management priorities, afforestation, stream/riparian restoration projects, and potentially burned area rehabilitation.  相似文献   

13.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

14.
Fires in mountain big sagebrush [Artemisia tridentata spp. vaseyana (Rydb.) Beetle] plant communities historically shifted dominance from woody to herbaceous vegetation. However, fire return intervals have lengthened with European settlement, and sagebrush dominance has increased at the expense of herbaceous vegetation in some plant communities. Management actions may be needed to decrease sagebrush in dense sagebrush stands to increase herbaceous vegetation. Prescribed fire is often used to remove sagebrush; however, mechanical treatments, such as mowing, are increasingly used because they are more controllable and do not pose an inherent risk of escape compared with fire. However, information on the effects of burned and mowed treatments on herbaceous vegetation and whether fire and mowed applications elicit similar vegetation responses are limited. We evaluated the effects of prescribed burning and mowing for 3?years after treatment in mountain big sagebrush plant communities. The burned and mowed treatments generally increased herbaceous cover, density, and production compared with untreated controls (P??0.05). In contrast, annual forb (predominately natives) cover, density, and biomass increased with mowing and burning (P?相似文献   

15.
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non-Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0–10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.  相似文献   

16.
ABSTRACT: Forty‐six independent stream reaches in southeastern Pennsylvania were surveyed to assess the relationships between geomorphic and habitat variables and watershed total impervious area (TIA) and to test the ability of the impervious cover model (ICM) to predict the impervious category based on stream reach variables. Ten variables were analyzed using simple and multivariate statistical techniques including scatter‐plots, Spearman's Rank correlations, principal components analysis (PCA), and discriminant analysis (DA). Graphical analysis suggested differences in the response to TIA between the stream reaches with less than 13 percent TIA and those with greater than 24 percent TIA. Spearman's Rank correlations showed significant relationships for large woody debris and sinuosity when analyzing the entire dataset and for depth diversity and the standard deviation of maximum pool depths when analyzing stream reaches with greater than 24 percent TIA. Classification into the ICM using DA was 49 percent accurate; however, the stream reaches did support the ICM in other ways. These results indicate that stream reach response to urbanization may not be consistent across geographical regions and that local conditions (specifically riparian buffer vegetation) may significantly affect channel response; and the ICM, used in the appropriate context, can aid in the management of stream reaches and watersheds.  相似文献   

17.
18.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

19.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

20.
In 1986 and 1987, a study on factors governing revegetation on ski grounds was conducted at Teine ski ground (built in 1971) located near the city of Sapporo in northern Japan. Soil movement, slope gradient, distance from forest edge, vegetation cover, and number of species on the ski ground were examined. Although artificial sowing of exotic plants was undertaken in the whole ground surface at the time of opening, bare land occurred in ca. 50% of surveyed plots and the ski ground was mostly covered with native plants. The number of species was positively correlated to vegetation cover, which was low in the sites where intensive soil erosions occurred in winter. A principal component analysis of plant species distinguished three major groups of factors, i.e., vegetation cover (first axis, contribution rate 30.3%), soil erosion in winter and slope gradient (second, 23.1%), and distance from forest edge (third, 16.3%). The vegetation characteristics on the ski ground were not determined by a single environmental gradient but by the combination of factors described above. In particular, soil movements, which are mostly derived from snowmelt, are considered to be the initiator of vegetation changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号