首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two different cases. The developed methodology is useful in coming up with an optimal number of monitoring wells within the budgetary limitations. The methodology also addresses the issue of redundancy, as it refines the existing monitoring network without losing much information of the network. The concept of uncertainty-based network design model is useful in various stages of a potentially contaminated site management such as delineation of contaminant plume and long-term monitoring of the remediation process.  相似文献   

2.
Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations.  相似文献   

3.
Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.  相似文献   

4.
In order to be able to make a decision, as to whether a room or building has a health-endangering pentachlorophenol (PCP) concentration, usually the PCP concentrations in air and settled dust are measured. The variability of the PCP concentration in indoor air and dust was studied. Air and dust samples were taken from 75 rooms in 30 buildings with suspicion of application of PCP-containing wood preservatives. Sampling was repeated four times within 18 months. Thirty-six rooms were reconstructed within the study; 39 rooms had unchanged contamination status during the study. The four times repeated measurements of PCP concentrations in air and dust in these rooms showed large variations of the measured values. The variability of the results is to a large extent in the same range as the measured values. The observed relative standard deviation of the PCP concentrations in air and dust does not depend on the average PCP concentration detected in the individual rooms.  相似文献   

5.
Adsorbent sampling with analysis by thermal desorption, gas chromatography and mass spectrometry (TD/GC/MS) offers many advantages for volatile organic compounds (VOCs) and thus is increasingly used in many applications. For environmental samples and other complex mixtures, the MS detector typically is operated in the scan mode to aid identification of co-eluting compounds. However, scan mode does not achieve the optimal sensitivity, thus compounds occurring at low concentrations may not be detected. This paper develops and evaluates the application of a more sensitive TD/GC/MS method using selective ion monitoring (SIM) that is applicable to VOC mixtures found in ambient and indoor air. Based on toxicity and prevalence, 94 VOCs (including terpenes, aromatic, halogenated and aliphatic compounds) were selected as target compounds. Two analytical methods were developed: a conventional full scan method for ions from 29 to 270 m/z; and a SIM method using 16 time windows and different ions selected for the compounds in each window. Both methods used the same Tenax GR adsorbent sampling tubes, TD and GC parameters, and target and qualifier ions. Laboratory tests determined calibrations, method detection limits (MDLs), precisions, recoveries and storage stability. Field tests compared scan and SIM mode analyses for duplicate samples of indoor air in 51 houses and outdoor air at 41 sites. Statistical analyses included the development of error/precision models. The laboratory tests showed that most compounds demonstrated excellent precision (<10% for concentrations exceeding approximately 0.5 microg m(-3)), good linearity, near identical calibrations for scan and SIM modes, a wide dynamic range (up to 1500 microg m(-3)), and negligible storage losses after 1 month (7 compounds showed moderate losses). SIM mode MDLs ranged from 0.004 to 0.27 microg m(-3), representing a modest (1.1 to 22-fold) improvement compared to scan mode. However, in field tests the SIM method detected significantly more compounds (e.g., styrene and chloroform). Error models fit most compounds and allow quantification of errors at selected percentiles. Overall, while the new SIM method is somewhat time-consuming to develop, it offers greater sensitivity and maintains the high selectivity of traditional scan methods.  相似文献   

6.
During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.  相似文献   

7.
2-Ethyl-1-hexanol is a possibly causative chemical in sick building symptoms, although 2-ethyl-1-hexanol has received little attention as a hazardous substance in studies on indoor air pollution. Airborne 2-ethyl-1-hexanol concentrations were measured from 2002 to 2004 in 99 rooms of 42 non-domestic buildings in Nagoya, Japan. The diffusive sampling method is effective for the measurement of a low level of 2-ethyl-1-hexanol in indoor air. The geometric mean (geometric standard deviation) of 2-ethyl-1-hexanol concentrations was 16.5 (5.4) microg m(-3) in indoor air and 1.9 (2.2) microg m(-3) in outdoor air. The maximum concentration of 2-ethyl-1-hexanol in indoor air and outdoor air was 2709 microg m(-3) and 12.4 microg m(-3), respectively. Fewer rooms in a small number of new buildings showed high concentrations of 2-ethyl-1-hexanol, while low concentrations were observed in many rooms of these buildings as well as the other new buildings. The room-to-room concentrations of 2-ethyl-1-hexanol in each building exhibited a wide variation. The geometric mean of the 2-ethyl-1-hexanol concentrations was significantly higher for indoor air than for outdoor air (p < 0.01). The correlation of the 2-ethyl-1-hexanol concentrations between indoor and outdoor air was not significant. Mechanical ventilation was effective in the temporary reduction of indoor 2-ethyl-1-hexanol level. These results suggest that the predominant source of 2-ethyl-1-hexanol was indoor areas.  相似文献   

8.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

9.
室内空气甲醛的现场快速监测技术已成为环境监测的热点研究领域,旨在为普通家庭提供室内空气甲醛现场监测方法。优化了甲醛吸收液用量、自然吸收时间及吸收液与空气接触面积对监测方法的影响,制作了用于目测室内空气中甲醛含量的标准比色卡,方法简便、快速、经济、实用,可望在普通家庭中得到广泛应用。  相似文献   

10.
Indoor air quality at nine locations viz. food courts, restaurant, bar, conference room, office and theater, which can be classified as public places have been monitored for Volatile Organic Compounds (VOCs) content. Forty VOCs have been identified and one fourth of these are classified as Hazardous Air Pollutants. Levels of most VOCs are observed to be below the guideline values for public places and offices, as adopted by Hong Kong. Consumer goods are found to be predominant source of chlorinated VOCs in indoor air. Levels of benzene and carbon tetrachlorides were observed to be above the guideline values at all the locations. Effect of ozonisation on Total VOC concentrations have also been studied.  相似文献   

11.
Indoor and ambient concentrations of 21 volatile organic compounds (including 14 hazardous air pollutants) were measured in the homes of nearly 80 western Montana (Missoula) high school students as part of the 'Air Toxics Under the Big Sky' program during the 2004/2005 and 2005/2006 school years. Target analytes were measured using low flow air sampling pumps and sorbent tubes, with analysis of the exposed samples by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The results reported here present the findings of the first indoor/ambient air toxics monitoring program conducted in a semi-rural valley location located in the Northern Rocky Mountain/Western Montana region. Of all of the air toxics quantified in this study, toluene was found to be the most abundant compound in both the indoor and ambient environments during each of the two school years. Indoor log-transformed mean concentrations were found to be higher when compared with ambient log-transformed mean concentrations at P < 0.001 for the majority of the compounds, supporting the results of previous studies conducted in urban areas. For the air toxics consistently measured throughout this program, concentrations were approximately six times higher inside the student's homes compared to those simultaneously measured directly outside their homes. For the majority of the compounds, there were no significant correlations between indoor and ambient concentrations.  相似文献   

12.
Air concentrations of 28 of the most commonly used household pesticides were measured inside nine homes in Jacksonville, Florida, and compared with corresponding outdoor levels. The households selected were sorted into three categories according to the degree of pesticide indoor usage. Personal air monitoring was also performed on one resident of each household by means of a portable sampler, which was kept with the person at all times. Five of the pesticides were found in the air inside of the majority of the homes at concentrations as high as 15 gm–3 (average concentrations, 12 ngm–3 to 2.4 gm–3). Indoor levels were generally one to two ordrrs of magnitude higher than surrounding outdoor air levels and personal air measurements were within ± 50% of corresponding indoor values. All samples were collected over 24-hr periods on polyurethane foam and analyzed by capillary colum gas chromatography with mass spectrometric and/or electron capture detection.  相似文献   

13.
Accurate quantification of stormwater pollutant levels is essential for estimating overall contaminant discharge to receiving waters. Numerous sampling approaches exist that attempt to balance accuracy against the costs associated with the sampling method. This study employs a novel and practical approach of evaluating the accuracy of different stormwater monitoring methodologies using stormflows and constituent concentrations produced by a fully validated continuous simulation watershed model. A major advantage of using a watershed model to simulate pollutant concentrations is that a large number of storms representing a broad range of conditions can be applied in testing the various sampling approaches. Seventy-eight distinct methodologies were evaluated by "virtual samplings" of 166 simulated storms of varying size, intensity and duration, representing 14 years of storms in Ballona Creek near Los Angeles, California. The 78 methods can be grouped into four general strategies: volume-paced compositing, time-paced compositing, pollutograph sampling, and microsampling. The performances of each sampling strategy was evaluated by comparing the (1) median relative error between the virtually sampled and the true modeled event mean concentration (EMC) of each storm (accuracy), (2) median absolute deviation about the median or "MAD" of the relative error or (precision), and (3) the percentage of storms where sampling methods were within 10% of the true EMC (combined measures of accuracy and precision). Finally, costs associated with site setup, sampling, and laboratory analysis were estimated for each method. Pollutograph sampling consistently outperformed the other three methods both in terms of accuracy and precision, but was the most costly method evaluated. Time-paced sampling consistently underestimated while volume-paced sampling over estimated the storm EMCs. Microsampling performance approached that of pollutograph sampling at a substantial cost savings. The most efficient method for routine stormwater monitoring in terms of a balance between performance and cost was volume-paced microsampling, with variable sample pacing to ensure that the entirety of the storm was captured. Pollutograph sampling is recommended if the data are to be used for detailed analysis of runoff dynamics.  相似文献   

14.
Air pollution monitoring programs aim to monitor pollutants and their probable adverse effects at various locations over concerned area. Either sensitivity of receptors/location or concentration of pollutants is used for prioritizing the monitoring locations. The exposure-based approach prioritizes the monitoring locations based on population density and/or location sensitivity. The hazard-based approach prioritizes the monitoring locations using intensity (concentrations) of air pollutants at various locations. Exposure and hazard-based approaches focus on frequency (probability of occurrence) and potential hazard (consequence of damage), respectively. Adverse effects should be measured only if receptors are exposed to these air pollutants. The existing methods of monitoring location prioritization do not consider both factors (hazard and exposure) at a time. Towards this, a risk-based approach has been proposed which combines both factors: exposure frequency (probability of occurrence/exposure) and potential hazard (consequence).This paper discusses the use of fuzzy synthetic evaluation technique in risk computation and prioritization of air pollution monitoring locations. To demonstrate the application, common air pollutants like CO, NOx, PM10 and SOx are used as hazard parameters. Fuzzy evaluation matrices for hazard parameters are established for different locations in the area. Similarly, fuzzy evaluation matrices for exposure parameters: population density, location and population sensitivity are also developed. Subsequently, fuzzy risk is determined at these locations using fuzzy compositional rules. Finally, these locations are prioritized based on defuzzified risk (crisp value of risk, defined as risk score) and the five most important monitoring locations are identified (out of 35 potential locations). These locations differ from the existing monitoring locations.  相似文献   

15.
In view of their crucial role in water and solute transport, enhanced monitoring of agricultural subsurface drain tile systems is important for adequate water quality management. However, existing monitoring techniques for flow and contaminant loads from tile drains are expensive and labour intensive. The aim of this study was to develop a cost-effective and simple method for monitoring loads from tile drains. The Flowcap is a modified Sutro weir (MSW) unit that can be attached to the outlet of tile drains. It is capable of registering total flow, contaminant loads and flow-averaged concentrations. The MSW builds on a modern passive sampling technique that responds to hydraulic pressure and measures average concentrations over time (days to months) for various substances. Mounting the samplers in the MSW allowed a flow-proportional part of the drainage to be sampled. Laboratory testing yielded high linear correlation between the accumulated sampler flow, q total, and accumulated drainage flow, Q total (r 2?>?0.96). The slope of these correlations was used to calculate the total drainage discharge from the sampled volume, and therefore contaminant load. A calibration of the MSW under controlled laboratory condition was needed before interpretation of the monitoring results was possible. The MSW does not require a shed, electricity, or maintenance. This enables large-scale monitoring of contaminant loads via tile drains, which can improve contaminant transport models and yield valuable information for the selection and evaluation of mitigation options to improve water quality. Results from this type of monitoring can provide data for the evaluation and optimisation of best management practices in agriculture in order to produce the highest yield without water quality and recipient surface waters being compromised.  相似文献   

16.
An extensive study has been conducted on the prevalence of organophosphorous flame retardants/plasticizers and phthalate ester plasticizers in indoor air. The targeted substances were measured in 45 multi-storey apartment buildings in Stockholm, Sweden. The apartment buildings were classified as high or low risk with regard to the reporting of sick building symptoms (SBS) within the project Healthy Sustainable Houses in Stockholm (3H). Air samples were taken from two to four apartments per building (in total 169 apartments) to facilitate comparison within and between buildings. Association with building characteristics has been examined as well as association with specific sources by combining chemical analysis and exploratory uni- and multivariate data analysis. The study contributes to the overall perspective of levels of organophosphate and phthalate ester in indoor air enabling comparison with other studies. The results indicated little or no difference in the concentrations of the target substances between the two risk classifications of the buildings. The differences between the apartments sampled within (intra) buildings were greater than the differences between (inter) buildings. The concentrations measured in air ranged up to 1200 ng m(-3) for organophosphate esters and up to 11?000 ng m(-3) for phthalate esters. Results in terms of sources were discerned e.g. PVC flooring is a major source of benzylbutyl phthalate in indoor air.  相似文献   

17.
This study investigates, experimentally and numerically, the environmental conditions prevailing in a large mechanically ventilated athletic hall, with the aid of the computational fluid dynamics code PHOENICS. The indoor space of the building was simulated in the PHOENICS environment and the model results were validated against experimental data collected during a 10-day campaign in the hall. The measurements included airflow characteristics and pollutants concentrations at different locations of the indoor space, as well as surface temperatures of the indoor materials. Having obtained good agreement between experimental and numerical results, different scenarios were applied in the model to investigate the environmental conditions prevailing in the hall under different ventilation and occupational conditions. These regard air-conditioning, heating, and cooling modes, as well as empty and full hall during an athletic event. The airflow, temperature, and CO2 concentration fields were studied and results revealed dynamic behavior of the fields, significantly altering with the different considered cases. The airflow patterns were characterized by distinct vortices of various sizes, originating from the ceiling air inlet fans of the heating–ventilating–air conditioning system, while temperature and pollution stratification were evident, indicating ineffective performance of the ventilation system.  相似文献   

18.
The present work attempts to identify VOC's in outdoor and indoor air in Mumbai City India. Ambient air was adsorbed on especially fabricated stainless steel cartridge packed with activated coconut charcoal at uniform flow rate. Qualitative identification of VOC's was done by thermally desorbing air from the cartridges and subsequent analysis on Varian GC-MS using NIST Library. The outdoor monitoring locations include residential area, commercial area, industrial, airport, petrol pumps, traffic junctions, arterial roads, highways, slums, parking area, service garages and municipal dump sites. The indoor locations comprised of air-conditioned and non air-conditioned offices, bedrooms, shops and instrumentation laboratory. The identified VOC's include aldehydes, ketones, polynuclear aromatic hydrocarbons, aromatic acids, oxygenated hydrocarbons, amines, esters and halogenated compounds. Thirteen VOCs in outdoor air and seven in indoor air amongst those identified, figure in the list of Hazardous Air Pollutants listed in Title III of the U.S. EPA Clean Air Act Amendments of 1990.  相似文献   

19.
This study investigated the indoor application practices of pesticides in different homes located in urban, suburban, and rural areas of the Bangkok Metropolitan Region (BMR). A multi-stage stratified-judgmental sampling was applied to select 280 representative households in BMR for an in-depth questionnaire survey. We found about 71% of these households having mosquitoes as their main indoor nuisance. An inventory on the types and active ingredients was obtained through a shop-shelf survey. Among 22 available commercial products, 12 different active ingredients were observed with the pyrethroid containing pesticides are the most common. The stepwise regression analysis was conducted to reveal the statistical association between indoor levels of total pyrethriods (in the air and on the floor surface of homes) and the household application practices such as the overlap time period since the last application, application and storage locations, and frequency of applications, for instances.  相似文献   

20.
An economic and quick methodology for performing a preliminary spatial assessment of a city air quality with the purpose to identify locations and zones susceptible to high pollution levels is proposed. A Patras case-study is selected, regarding the air pollutants of sulfur dioxide (SO2) and oxides of nitrogen (NOx). A total number of 451 samples of short duration, of which 225 were randomly picked in morning rush hours and 226 within evening rush hours, were collected from 50 locations of the major Patras area during a year period, when peaks of primary air pollutants usually occur. Concentration measurements at prescribed locations used to statistically calculate spatial average concentrations approximating 1-h mean values with mean probable errors less than 25.9% for SO2, NO and NOx and less than 15.5% for NO2. Then iso-concentration contour diagrams plotted indicate high pollution zones and possibly appropriate locations for continuous or random monitoring according to the European Community (EC) Directives. The 1-h mean concentrations were in good correlation to the corresponding traffic rates and useful relationships are given (0.54 ≤ r ≤ 0.63). In addition, comparisons with data available for other cities, as well as with the limit and guide values provided by the EC and the World Health Organization (WHO) were given. The present data could be useful for the design and optimization of a city network of stations for monitoring air quality, for environmental impact assessments, future reference and comparisons due to city development needs, as well as for validating dispersion models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号