首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
为探明隧道侧向排烟口尺寸对排烟效果的影响,研究了不同隧道宽度与排烟口宽高比条件下排烟口温度分布。结果表明随着排烟口宽高比的增大,排烟口温度分布水平对称性逐渐显著。随着宽高比的增大,排烟口内烟气所占比例不断增大,排热效率逐渐增加。随着隧道宽度的增大,排烟口处烟气温度与烟气层厚度不断降低。当宽高比小于2/3时,排烟口排出气体中烟气比例基本不随隧道宽度的变化而变化;当宽高比不小于2/3时,烟气比例随隧道宽度的增加先增大后减小,排烟效果优劣的顺序依次为:隧道宽度20 m、10 m、25 m、15 m。  相似文献   

2.
为探究水下隧道侧向排烟阀尺寸对烟气蔓延特性的影响,依托苏震桃高速公路太湖隧道工程,采用理论分析与FDS数值模拟等方法,对水下隧道侧向排烟系统烟气蔓延特性展开分析。结果表明:随着排烟量的增加,侧向排烟阀变得越狭长,烟气控制效果越好,侧向排烟系统的排烟效率越高;随着排烟量的增大,每个排烟阀处的局部阻力损失有明显增加;并且随着排烟阀变得越来越狭长,排烟阀处局部阻力损失越小,最大能降低原有损失的15.6%。提出了排烟阀局部阻力与无量纲排烟量与无量纲排烟阀尺寸之间的拟合关系式。结合排烟效率分析结果,建议排烟阀尺寸(宽×高)选取4 m×1.5 m。  相似文献   

3.
为探明水幕排烟系统对隧道内烟气控制和排烟效率的影响,通过火灾动力学求解器(FDS)研究不同排烟风量下隧道内烟气、温度和速度分布。结果表明:排烟量小于100 m3/s时,水幕无法有效地阻隔有毒烟气的蔓延;当火源热释放速率(HRR)为10、20及30 MW时,排烟量分别为100、160和180 m3/s,能将烟气限制在水幕排烟系统内;在水幕的作用下,水幕外的温度分布均满足人员逃生的需要(小于80℃),在水幕排烟系统中烟气控制要比温度控制更为重要;相同火源HRR下,排烟口的排烟效率随着排烟量先增大后减小;排烟口的吸穿效应在水幕排烟系统中很难出现,排烟口吸入位于隧道底部混有大量新鲜空气的烟气是造成排烟效率降低的主要原因。  相似文献   

4.
为了研究顶侧壁排烟模式对盾构隧道排烟效果的影响,基于CFD数值模拟分析方法,通过烟气蔓延范围、隧道拱顶温度、烟气层厚度、排烟口的排烟速率和排烟效率等参数的变化规律分析对比顶侧壁、侧壁及顶部3种排烟模式对盾构隧道内火灾烟气的控制效果。结果表明,顶侧壁排烟模式和侧壁排烟模式的烟气蔓延距离较远,3种排烟模式下烟气层厚度和拱顶温度在火源两侧均呈现近似对称分布,顶部排烟模式的排烟效率明显高于顶侧壁排烟模式和侧壁排烟模式。综合考虑,顶侧壁排烟模式的烟气控制效果欠佳,因此从烟气防治的角度考虑盾构隧道排烟设计应避免顶侧壁排烟模式。  相似文献   

5.
针对某公路隧道采用集中排烟方式的工程实际,为了分析纵向诱导风速对隧道火灾烟气控制效果的影响规律,进而确定可能的火灾场景时的合理纵向诱导风速,采用火灾动力学模拟软件FDS构建了数值分析模型,并设计了相应的火灾工况.根据隧道实际交通流量、车辆类型及公路等级,确定了模拟火灾规模.分别分析了火灾规模为50 MW时隧道内不同火源位置(排烟阀打开段中部、上游1个/下游5个排烟阀、上游2个/下游4个排烟阀),不同排烟方式下(双向均衡排烟、上游端单向排烟、下游端单向排烟),不同纵向诱导风速情况时的隧道2m高处能见度、烟气蔓延范围及排烟效率,根据模拟分析结果,进而确定了不同火灾工况时的合理纵向诱导风速.结果表明:不同纵向诱导风速对集中排烟模式下烟气控制效果影响显著;特定火灾规模时,火源位置、排烟方式对合理纵向诱导风速的影响不大.  相似文献   

6.
从火灾烟气蔓延及其控制效果出发,采用FDS6. 2构建东湖隧道侧向集中排烟模型,通过对不同排烟量下隧道内烟气蔓延范围、排烟效率、温度场、人员疏散微环境排烟效果指标进行定量分析,得到东湖隧道侧部集中排烟系统在20 MW火灾时合理排烟量为300 m3/s。研究表明,侧部集中排烟模式下,当风机排烟量大于有效控烟所需风量时,配以2. 69 m/s隧道断面风,风机排烟量越大对隧道内火灾烟气蔓延的控制效果越明显。  相似文献   

7.
为探究纵向通风与侧向集中排烟协同作用下,沉管隧道内车厢火羽流的临界控制风速特征,首先,建立1∶8缩尺寸隧道试验模型;然后,选取3种车厢开口尺寸及9组火源功率,并考虑侧向集中排烟系统开启和关闭2种状态,采集沉管隧道内不同纵向风速下顶棚烟气温度数据;同时,通过火灾动力学模拟软件(FDS)模拟沉管隧道内车厢火羽流的速度场和温度场分布特征;最后,分析临界风速演化的物理影响机制。结果表明:无论侧向集中排烟系统是否开启,隧道顶棚下方烟气最大温升均会随纵向风速增加而下降,同时隧道内烟气逆流长度也会不断缩短直至为0;随隧道内车厢火源功率的增加,临界风速均呈现先增大后不变的趋势;在相同火源功率条件下,侧向排烟系统开启时对应的临界风速明显大于其关闭的情况;在侧向排烟与纵向通风协同作用下,随火源功率增加,沉管隧道车厢火羽流临界风速呈现先增加、后不变的分段函数关系。  相似文献   

8.
利用FDS(Fire Dynamics Simulator)分别对自然排烟和机械排烟作用下的中庭火灾烟气控制效果进行了数值模拟研究,自然排烟口的面积分别为中庭地面面积的5.6%、11.3%和22.5%,机械排烟量分别为43182m3/h和102000m3/h,同时改变机械排烟口的位置。通过对比各工况下的竖向温度分布、中庭内温度场、烟气层界面高度来判断不同工况下的排烟效果,并计算得到了相应排烟效率来判断各排烟模式下的排烟有效性。结果显示,中庭内的温度和排烟效率都随排烟量的增大而减小,自然排烟的排烟效率最低,仅为17.9%~21.3%,机械排烟量43182m3/h时的排烟效率最高,可达45%左右。  相似文献   

9.
侧部集中排烟是新型隧道火灾通风排烟模式.为探究侧部集中排烟模式下烟气层吸穿问题,采用数值模拟方法对排烟口处烟气层热物理特性的影响进行研究,改变排烟口间距、形状(长宽比)、面积、距拱顶距离等因素,分析了发生吸穿现象所对应的温度分布、烟气层厚度及排烟效率.结果表明:侧部集中排烟模式排烟口处发生吸穿现象的区域位于排烟口下部靠火源一侧空间;随排烟口间距增大,烟气层更容易发生吸穿现象;当排烟口面积一定时,排烟口的长宽比越大,排烟口发生吸穿的区域越小,吸穿现象越弱;得到了 15 MW火灾情况下侧部排烟口的最优尺寸、间距及排烟口距拱顶最佳距离.  相似文献   

10.
姜学鹏  吕彦昕  李超  万娟 《火灾科学》2021,30(3):151-159
引入烟气掺混影响长度的概念,针对侧部点式排烟模式下不同火灾热释放速率、排烟流量等变化条件,对烟气层厚度、烟气层温度及水平流动速度随烟气水平蔓延的变化情况进行了数值模拟研究。结果表明:烟气掺混影响长度与排烟流量成正比例增长关系;排烟流量较小时,烟气存在明显分层,随着排烟流量的增大,烟气层与冷空气层剧烈掺混,烟气层变得紊乱,看不到明显的分层现象;同一纵向条件下排烟口附近上层烟气层的流速值随排烟流量增加呈现先增大后减小的趋势,不同纵向条件下排烟口外侧烟层流速较低,距离排烟口越远时,侧向排烟对烟气蔓延的抑制作用越弱;排烟流量对于烟气层稳定性的抑制作用主要集中在排烟口处及排烟口与隧道端部区段。  相似文献   

11.
基于多指标约束的隧道集中排烟量设计模型   总被引:1,自引:1,他引:0  
利用经典羽流模型计算烟气生成量来设计隧道集中排烟系统的排烟量存在设计量偏小的问题。从火灾烟气控制效果出发,选取排烟效率、烟气蔓延范围、烟气流动速度、人员疏散微环境4个指标,提出一套隧道集中排烟系统的评价指标,构建基于多指标约束的隧道集中排烟量设计模型。通过FDS 5.0对某越江隧道火灾时的各评价指标参数值进行模拟计算,得到该隧道集中排烟系统在20MW火灾时的最适排烟量为140~150 m3/s。研究表明,利用多指标约束的排烟量设计模型可提高隧道集中系统排烟量设计的准确性。  相似文献   

12.
为研究隧道火灾时空气幕与排烟系统复合模式下的烟气蔓延规律,优化选择防排烟方式,以某越江隧道为研究对象,运用FDS数值模拟方法探究射流速度、排烟量和空气幕与排烟口间距对防排烟效果的影响。结果表明:空气幕与排烟口间距对射流特性与烟气蔓延有较强影响,间距为30 m的控烟效果最佳;空气幕与机械排烟复合作用的控烟效果远优于每个独立系统,可实现可靠挡烟和有效排烟;当火源功率20 MW时,随空气幕射流速度的增加挡烟效果有所增加,但射流速度不宜过大,取20~30 m/s;机械排烟对温度与可见度影响比空气幕作用效果显著,一定程度上增加排烟量可降低所需气幕射流速度;综合考虑防排烟的有效性和经济性,取射流速度为20 m/s、排烟量为100 m3/s为最优防排烟组合方式。  相似文献   

13.
吸穿现象的发生将降低隧道集中排烟效率。排烟口间距是影响烟气层吸穿的重要因素。以长22 m的1∶20缩尺寸集中排烟隧道模型为数值模拟研究对象。采用对称方式开启6个排烟口进行双向均衡排烟模式。比较了排烟口间距分别为3 m和2 m时的烟气蔓延范围、烟气层温度和厚度,分析了烟气层厚度、温度与排烟速率之间的关系。结果表明:排烟速率大到一定程度时会导致烟气层吸穿;排烟口间距越大,导致排烟口开始发生吸穿的排烟速率越小;同一排烟速率下,排烟口之间的间距越大,越远离火源的排烟口越容易发生吸穿。因此,为避免吸穿现象的发生,需选取合适的排烟速率及排烟口间距。  相似文献   

14.
通过数值模拟研究了隧道内挡风板的设置对竖井自然排烟系统效率的影响,探讨了不同火源热释放速率与不同挡风板安装参数(挡风板高度、挡风板与竖井距离)下隧道火灾的烟气温度分布规律、流动规律及竖井自然排烟系统排烟效率。采用N系数法确定了烟气层与冷空气的界面,用于判断是否发生烟气层吸穿现象。结果表明,与无挡风板的工况相比,设置挡风板后,竖井排烟效率提升显著。设置挡风板对向下游方向运动的火灾高温烟气产生了一定的阻滞作用,使高温烟气在竖井下方蓄积,在一定程度上避免了竖井自然排烟系统出现烟气层吸穿现象。设置挡风板后,竖井的排烟效率随挡风板高度增加而增加,而挡风板与竖井间距离的变化对竖井排烟效率的影响较为有限。对于相同的火源热释放速率,竖井排烟效率与挡风板高度在一定范围内几乎成线性变化。建立了排烟效率与无量纲挡风板高度及无量纲火源热释放速率之间的经验公式,可对不同挡风板高度与热释放速率下的竖井自然排烟效率进行预测。  相似文献   

15.
在通风网络理论的基础上编制了基于质量描述的隧道网络通风计算程序,并采用模型试验方法对火灾通风网络计算结果进行了验证,证实了网络程序的可靠性。将研编的通风网络计算程序应用于某隧道集中排烟模式下火灾通风排烟技术研究,探讨了排烟量和漏风量对排烟道内和排烟阀处烟气流速的影响规律。结果表明,增加排烟量时,排烟道内和排烟阀处烟气流速呈升高趋势,越靠近排烟风机处,其烟气流速升高趋势越明显。漏风分支风阻的大小较显著地影响着漏风量的大小。减小未开启排烟阀的分支风阻系数,漏风量增大,开启的排烟阀处流量减少,当漏风分支风阻系数减小到10 N·s/(kg·m)2时,漏风量超出规范规定值。  相似文献   

16.
纵向通风隧道内火灾温度场分布规律研究   总被引:4,自引:2,他引:2  
以狮子洋水下特长隧道为工程背景,利用CFD数值模拟软件FDS 4.01,建立隧道实体物理模型,进行火灾数值模拟分析。研究了列车火灾热释放功率为15 MW、不同坡度、不同纵向通风风速下,该类隧道内拱顶附近和2 m高处温度场的纵向分布规律,以及各工况下拱顶的最高温度,并分析其对隧道结构防火和人员疏散救援的影响。结果表明:随隧道坡度的增大,在同一通风速率下的烟气回流长度逐渐减小,但随着风速的加大,坡度对烟气回流的影响逐渐减弱;随着通风风速的增大,火区附近的温度下降,而沿程温度上升,纵向通风速率越大,拱顶温度越低。  相似文献   

17.
隧道集中排烟系统的排烟风量是影响火灾烟气抽排效果的关键参数.量化评价烟气抽排效果有利于排烟风机的优化选型.基于FDS的火灾燃烧过程的化学反应式得到隧道火灾烟气的质量生产速率,提出了排烟效率和排烟效能两个表征集中排烟系统烟控能力的计算公式.用基于大涡模拟的FDS软件对隧道火灾烟气进行数值模拟计算.对比研究表明,随着排烟风量的增大,机械排烟效率增大,机械排烟效能反而降低.风机排烟风量增大使多个排烟阀处发生吸穿现象,但风流短路并未降低整个排烟系统的排烟效率.根据研究结果给出了合理的风机排烟风量设计区间,确定三阳路道路隧道集中排烟系统的最佳排烟风量为170 m3/s,对应的排烟效率为96.3%.  相似文献   

18.
为了研究热障效应对有顶商业步行街自然排烟的影响,采用理论分析与数值模拟相结合的方法,对不同高度及不同环境温度条件下有顶商业步行街自然排烟时顶棚附近的温度、能见度以及排烟效率进行了分析。结果表明:顶棚附近环境温度越高,自然排烟效果越差,自然排烟效率随顶棚热空气温度的升高呈现线性降低趋势;步行街高度越高,竖直方向的温度差越小,到达顶棚的烟气流速越小,排烟效率越低;当顶棚附近环境温度为45℃时,有顶商业步行街高度不宜超过35 m。  相似文献   

19.
为了研究纵向风作用下隧道内竖井自然排烟对烟气逆流长度的影响,采用数值模拟的方法,建立了不同竖井高度的全尺寸隧道模型。并选取无竖井排烟的工况作为对照组,模拟不同火源功率下,改变竖井与火源纵向距离时竖井自然排烟对烟气逆流长度的影响和竖井排烟失效临界风速的变化。结果表明:当纵向风风速较小时,竖井对烟气逆流起抑制作用;随着风速增大,烟气逆流被控制在竖井近域范围内,竖井对烟气逆流的抑制作用减弱;当风速足够大时,烟气逆流将被完全限制在竖井下游,此时竖井排烟作用失效,且对纵向通风气流起到分流作用,烟气逆流长度反而变长。在此基础上,提出了竖井排烟失效临界风速的概念,竖井排烟失效临界风速随竖井高度增加而增大。  相似文献   

20.
纵向通风下坡度隧道火灾烟气特性数值模拟研究   总被引:1,自引:0,他引:1  
为探讨纵向通风情况下坡度隧道火灾烟气的温度分布、回流长度等特性参数,运用火灾动力学模拟软件FDS建立一个长为500 m的公路隧道模型,对不同坡度、不同纵向通风速率的20组火灾工况进行模拟研究,通过分析各工况的模拟结果,并结合前人在隧道火灾烟气特性研究方面的成果,得到火灾情况下隧道内烟气的纵向温度分布规律、隧道拱顶温度变化规律、温度偏移及烟气回流长度变化规律等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号