首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Xue N  Xu X  Jin Z 《Chemosphere》2005,61(11):951-1606
For screening 31 potential or suspected endocrine-disrupting pesticides in water and surface sediments, a multiresidue analysis method based on gas chromatography with electron capture detection (GC/ECD) was developed. Solid phase extraction (SPE) technology with Oasis® HLB cartridge was also applied in sample extraction. The relevant mean recoveries were 70–103% and 71–103% for water and sediment, respectively. Relative standard deviations (RSD) are 2.0–7.0%, 4.0–8.0% for water and sediment, respectively. Thirty one pesticides (-HCH, β-HCH, γ-HCH, δ-HCH, hexachlorobenzene (HCB), aldrin, heptachlor, endosulfan I & II, p,p′-DDD, o,p′-DDT, p,p′-DDT, p,p′-DDE, endrin aldehyde, endosulfan sulphate, methoxychlor, hepachlor epoxide, -chlordane, γ-chlordane, dieldrin, endrin, dicofol, acetochlor, alachlor, metolachlor, chlorpyriphos, nitrofen, trifluralin, cypermethrin, fenvalerate, deltamethrin) in water and surface sediment samples from Beijing Guanting reservoir were analyzed. Concentrations of pesticides ranged from 7.59 to 36.0 ng g−1 on a dry wt. basis for sediment samples, from 279.3 to 2740 ng l−1 for pore waters and from 48.8 to 890 ng l−1 for water samples, respectively, with a mean concentration of 10.7 ng g−1 in sediment, 735 ng l−1 in pore water and 295 ng l−1 in water, respectively. The data obtained provides information on the levels and sources of endocrine-disrupting pesticides in Guanting reservoir. These results underscore the need to improved environmental protection measures in order to reduce the exposure of the population and aquatic biota to these endocrine-disrupting compounds.  相似文献   

2.
Bottom sediment samples from 121 sites of the Lake Albufera of Valencia were analyzed. Dieldrin, endrin, heptachlor and op′-DDT were not detected (<0.01 ng g−1) in 88–93% of the sites. Aldrin and HCB concentration ranges were between <0.01 and 0.1 ng g−1 in 86% and 94% of the sites, respectively. Heptachlor-epoxide and lindane 95% confidence intervals were 0.2–0.5 and 0.06–0.12, respectively. The greatest average concentration corresponds to pp′-DDE, pp′-DDD and pp′-DDT. The sum of six isomers and derivatives of the DDT average concentration reaches 2.1 ng g−1, as opposed to 2.7 ng g−1 for the sum of 13 pesticides considered. In the site with a major contamination, 27.0 ng g−1 of pp′-DDD and 12.8 ng g−1 of pp′-DDT were accumulated. The DDE:DDT proportion average was 0.37, indicating an aged DDT contamination. Concentrations of pesticides in sediments were compared to three sediment quality guidelines, and indicated that a low biological effects level can be expected in either sediments or aquatic organisms.  相似文献   

3.
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05–0.92, 0.12–11.01, 0.02–0.25 ng g−1 dry wt, respectively, and in the surface water samples were 0.02–0.6, 0.02–0.58 and 0.02–0.5 ng l−1, respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport.  相似文献   

4.
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

5.
Organochlorines are found even in organisms living in remote areas such as the Arctic marginal ice zone. Organochlorine concentrations in ice-associated (sympagic) amphipods are related to their diet. Therefore, the size-dependent diet shift of Gammarus wilkitzkii may influence its organochlorine content. In this preliminary study, the organochlorine concentrations in two size classes (small 29 mm and large >29 mm) of G. wilkitzkii were analysed. The concentrations of more lipophilic compounds [e.g. polychlorinated biphenyls (PCBs)] were lower in the small than the large size class, whereas concentrations of less lipophilic compounds [e.g. hexachlorocyclohexanes (HCHs)] did not differ by size class.

Since contamination transport by the atmosphere, ocean currents and sea ice may vary, the organochlorine burden in sympagic organisms may also vary. There are no data available on temporal variation of organochlorine burden in Arctic sympagic fauna. Therefore, we compared organochlorine concentrations in sympagic amphipods (G. wilkitzkii, Apherusa glacialis and Onisimus spp.) between 1998 and 1999. Organochlorine concentrations in all amphipods were low in both years, with sum organochlorines from 50.7 to 621.9 ng g−1 lipid weight. The concentrations of hexachlorobenzene (HCB), chlordanes, DDTs and PCBs were higher in 1999 than 1998, whereas the HCH concentrations were lower in 1999 than 1998. The organochlorine concentrations differed between the taxa in both years in a similar increasing manner from A. glacialis to both G. wilkitzkii and Onisimus spp.

In studies of bioaccumulation relative to body size and temporal variation, a thorough interpretation requires samples from several size classes and years. Nevertheless, the present data provide new knowledge on contaminants in Arctic invertebrates where data are scarce.  相似文献   


6.
In Kazakhstan, there is a problem of finding ways to clean local sites contaminated with pesticides. In particular, such sites are the deserted and destroyed storehouses where these pesticides were stored; existing storehouses do not fulfill sanitary standards. Phytoremediation is one potential method for reducing risk from these pesticides. Genetic heterogeneity of populations of wild and weedy species growing on pesticide-contaminated soil provides a source of plant species tolerant to these conditions. These plant species may be useful for phytoremediation applications. In 2008–2009 and 2011, we surveyed substances stored in 80 former pesticide storehouses in Kazakhstan (Almaty oblast) to demonstrate an inventory process needed to understand the obsolete pesticide problem throughout the country, and observed a total of 354.7 t of obsolete pesticides. At the sites, we have found organochlorine pesticides residues in soil including metabolites of dichlorodiphenyltrichloroethane and isomers of hexachlorocyclohexane. Twenty-four of the storehouse sites showed pesticides concentrations in soil higher than maximum allowable concentration which is equal to 100 μg kg?1 in Kazakhstan. Seventeen pesticide-tolerant wild plant species were selected from colonizing plants that grew into/near the former storehouse’s pesticides. The results have shown that colonizing plant annual and biannual species growing on soils polluted by pesticides possess ability to accumulate organochlorine pesticide residues and reduce pesticide concentrations in soil. Organochlorine pesticides taken up by the plants are distributed unevenly in different plant tissues. The main organ of organochlorine pesticide accumulation is the root system. The accumulation rate of organochlorine pesticides was found to be a specific characteristic of plant species and dependent on the degree of soil contamination. This information can be used for technology development of phytoremediation of pesticide-contaminated soils.  相似文献   

7.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


8.
The content of 21 organochlorine pesticides were studied in vegetation samples of a highly contaminated area by isomers of hexachlorocyclohexane (HCH) located close to a former industrial area in Galicia (NW Spain). Five species of plants were collected at different points of the contaminated area and the different parts of the plants were separated in order to study differences in accumulation capabilities. Samples were extracted employing microwave energy followed by a clean-up step using solid phase extraction and finally determined by GC–ECD. The results obtained show that the most abundant pesticides are HCHs isomers, being the main isomers β-HCH and -HCH in all samples whereas δ-HCH and γ-HCH were at lower levels. Some other pesticides such as p,p′-DDT, p,p′-DDD and p,p′-DDE were also present in much lower amount in some of the samples. Several degradation products of HCH were also identified in some samples by GC–MS.  相似文献   

9.
Zhang ZL  Hong HS  Zhou JL  Huang J  Yu G 《Chemosphere》2003,52(9):1423-1430
Persistent organochlorine compounds were analyzed in surface water, porewater and surficial sediment samples from Minjiang River Estuary, which is the first large river in Fujian Province, Southeast of China. The total concentrations of 18 organochlorine pesticides were 214.4-1819, 4541-13,699 ng/l, 28.79-52.07 ng/g in surface water, porewater and sediments (dry weight) respectively, and those of 21 polychlorinated biphenyls (PCBs) in the three phases were: 203.9-2473, 3192-10,855 ng/l, 15.14-57.93 ng/g respectively. The results showed that the concentrations of these selected organochlorine pesticides and PCBs in porewater were higher than those in surface water. It may be due to the fact that these organic hydrophobic pollutants tend to stay in the sediments, and then re-suspend from the sedimentary phase to the upper water. We have analyzed the distribution characteristics of individual organochlorine pesticide components and PCBs, and found that alpha-HCH, DDE, Heptachlor, Endosulfan II, Methoxychlor were the most common organochlorine pesticides contaminants. Considering the groups of HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH) and DDTs (DDTs=DDT+DDD+DDE), the predominance of beta-HCH, DDE in all water, porewater and sediment samples was clearly observed. This observation suggested that beta-HCH was resistant to biodegradation and the DDTs had been transformed to its metabolites, DDE and DDD, of which DDE that was more un-degradable. The PCB congeners containing 3-6 chlorines had the great preponderance in the three phase. These results were compared with those present in other estuaries and harbors. A risk assessment was evaluated for the persistent organic pollutants in the Minjiang River Estuary.  相似文献   

10.
Lewis M  Chancy C 《Chemosphere》2008,70(11):2016-2024
Total mercury concentrations are summarized for environmental media and biota collected from near-coastal areas, several impacted by contaminant sources common to the Gulf of Mexico. Water, sediment, fish, blue crabs, oysters, clams, mussels, periphyton and seagrasses were collected during 1993–2002 from targeted areas affected by point and non-point source contaminants. Mean concentrations in water and sediment were 0.02 (±1 standard deviation = 0.06) μg l−1 and 96.3 (230.8) ng g−1 dry wt, respectively. Mean total mercury concentrations in fish, blue crabs, brackish clams and mussels were significantly greater than those in sediment, seagrass, colonized periphyton and oysters. Concentrations (ng g−1 dry wt) averaged 23.1 (two seagrass species), 220.1 (oysters), 287.8 (colonized periphyton), 604.0 (four species of freshwater mussels), 772.4 (brackish clam), 857.9 (blue crabs) and 933.1 (nine fish species). Spatial, intraspecific and interspecific variability in results limited most generalizations concerning the relative mercury contributions of different stressor types. However, concentrations were significantly greater for some biota collected from areas receiving wastewater discharges and golf course runoff (fish), agricultural runoff (oysters) and urban stormwater runoff (colonized periphyton and sediment). Marine water quality criteria and proposed sediment quality guidelines were exceeded in 1–12% of total samples. At least one seafood consumption guideline, criteria or screening value were exceeded in edible tissues of blue crabs (6% total samples) and nine fish species (8–33% total samples) but all residues were less than the US Federal Drug Administration action limit of 1.0 ppm and the few reported toxic effect concentrations available for the targeted biota.  相似文献   

11.
A simple, sensitive, reliable method was developed for the simultaneous determination of organochlorine and pyrethriod pesticide residues in Chinese patent medicines Six ingredient rehmannia pills and Xiaoyao pills. These pesticides were extracted by ethyl acetate. The extraction time and volume of ethyl acetate were optimized. Cleanup of extracts was performed with dispersive-solid phase extraction using graphitized carbon black as the sorbent. The determination of pesticides in the final extracts was carried out by gas chromatography–tandem mass spectrometry in multiple reaction monitoring mode (GC-MS/MS, MRM). The linearity of the calibration curves is good in matrix-matched standard and yields the coefficients of determination (R2) ≥0.99 for all of the target analytes. Under optimized conditions, the average recoveries (five replicates) for most pesticides range from 75.5% to 114.6%, and RSDs are less than 10.0%. The LODs of 18 pesticides in Six ingredient rehmannia pill and Xiaoyao pills are in the range of 0.01–8.82 μg kg?1. The developed method meets the requirements of pesticide residue analysis and could be effectively used for routine analysis of the organochlorine and pyrethriod pesticide residues in Six ingredient rehmannia pills and Xiaoyao pills.  相似文献   

12.
The utilization of organochlorine pesticides for pest control chemical has been of great interest on residue contamination from biological organisms in the environment. Green mussel (Perna viridis) samples were monitored as bioindicators for assessment of the water quality in coastal waters along the Gulf of Thailand. Thirty-six samples were collected from 12 stations during 1997-1999 and analysed for 26 organochlorine pesticide compounds. This paper focuses on the contamination of organochlorine pesticide residues in green mussel (P. viridis) during 1997-1999. The limit of detection of all organochlorine pesticides compounds was at the range of 0.1-8.3 ng g(-1) wet weight and recovery 75-95%. The concentration of organochlorine pesticides residues in green mussel was lower than the maximum residue limit for aquatic animals as recommended by the Ministry of Public Health of Thailand. The trend of organochlorine pesticide residue contamination in this area decreased from 1989 to 1999.  相似文献   

13.
The hydrographic basin of the Atoya river, located in the Department of Chinandega, one of the main cotton producing regions in Nicaragua, is intensively contaminated by pesticides. Samples of river waters and sediments, as well as strategically selected wells have been analyzed to study variations in the concentrations of organochlorine and organophosphorus pesticide residues between the dry season (November-April) and the rainy season (May-June). Generally, higher concentrations of pesticides have been detected in the river waters and sediments in the dry season. DDT, DDD, DDE compounds and toxaphene are the most frequent organochlorine residues found in the water and sediment samples, while endrin, aldrin, dieldrin and lindane are mainly found in the waters of rivers and wells. Organophosphorus compounds were rarely detected. However, residues of ethion, methyl-parathion and ethyl-parathion were found in high concentrations in some river and well water samples. Generally, organochlorine compounds tend to accumulate in the fine grain-size fractions, rich in organic matter, except DDE, which concentrates basically in the coarse grain-size fractions.  相似文献   

14.
The distribution of organochlorine pesticides in the aquatic ecosystem from the Densu river revealed varying levels of concentration in water and the sediment samples. Three locations were sampled along the river to evaluate the levels of organochlorine pesticide residue in the river. Sediment and surface water samples were extracted by soxhlet and liquid-liquid extraction respectively and analyzed using Gas Chromatograph coupled with electron capture detector. The detectable organochlorine pesticides were gamma-hexachlorocyclohexane (HCH), delta-hexachlorocyclohexane, heptachlor, aldrin and dieldrin. The other pesticides that were investigated are gamma-chlordane, alpha endosulfan, endosulfan sulfate, p,p′-DDT and its metabolite p,p′-DDE, methoxychlor, endrin and its metabolite endrin aldehyde and endrin ketone. The order of increasing frequency of detection of samples was higher in sediment than water. In sediment, the mean concentration ranged from 0.030 μg kg−1 dry weight (endrin) to 10.98 μg kg−1 dry weight (aldrin). The highest detected concentration of organochlorine in water was endosulfan sulfate with mean concentration of 0.185 μg L−1. Analysis of variance indicated significant differences for most organochlorine pesticide residue in the sediment sampled from the various locations. Some of the levels of organochlorine pesticides detected in water were relatively high compared to guideline values set by World Health Organization and Australia and thus could be harmful if the trend is not checked.  相似文献   

15.
Spliid NH  Helweg A  Heinrichson K 《Chemosphere》2006,65(11):2223-2232
Filling and cleaning of pesticide sprayers presents a potential risk of pollution of soil and water. Three different solutions for handling sprayers have been suggested: Filling and cleaning in the field, filling and cleaning on hard surfaces with collection of the waste water, and filling and cleaning on a biobed, which is an excavation lined with clay and filled with a mixture of chopped straw, sphagnum and soil with turf on top, and with increased sorption capacity and microbial activity for degradation of the pesticides. In the present study the degradation and leaching of 21 pesticides (5 g of each) was followed in an established full-scale model biobed. Percolate was collected and analysed for pesticide residues, and the biobed material was sampled at three different depths and analysed by liquid chromatography double mass spectrometry (LC-MSMS). During the total study period of 563 days, no traces of 10 out of 21 applied pesticides were detected in the percolate (detection limits between 0.02 and 0.9 μg l−1) and three pesticides were only detected once and at concentrations below 2 μg l−1. During the first 198 days before second application, 14% of the applied herbicide bentazone was detected in the leachate with maximum and mean concentrations of 445 and 172 μg l−1, respectively. About 2% of the initial mecoprop and fluazifop dose was detected in the percolate, with mean concentrations of 23 μg l−1, while MCPA and dimethoate had mean concentrations of 3.5 and 4.7 μg l−1, respectively. Leachate concentrations for the remaining pesticides were generally below the detection limit (0.02–0.9 μg l−1, below 1% of applied). Sorption studies of five pesticides showed that compounds with a low Kd value appeared in the leachate. After 169 days, all pesticides in the biobed profile were degraded to a level below 50% of the calculated initial dose. Pesticides with Koc values above 100 were primarily found in the uppermost 10 cm and degraded slowest due to the low bioavailability. The 11 most degradable pesticides were all degraded such that less than 3% remained in the biobed after 169 days.

Following second pesticide application of the biobed, leachate was sampled 215 and 365 days after the treatment. This showed the same pesticides to be leached out and at concentrations comparable to those of the first treatment. The same pesticides as after the first treatment were retained in the biobed.  相似文献   


16.
Wang D  He L  Shi X  Wei S  Feng X 《Chemosphere》2006,64(11):1845-1854
An investigation was conducted to estimate mercury emission to the atmosphere from different environmental surfaces and to assess its contribution to the local mercury budget in Chongqing, China. Mercury flux was measured using dynamic flux chamber (DFC) at six soil sites of three different areas (mercury polluted area, farmland and woodland) and four water surfaces from August 2003 to April 2004. The mercury emission fluxes were 3.5 ± 1.2–8.4 ± 2.5 ng m−2 h−1 for three shaded forest sites, 85.8 ± 32.4 ng m−2 h−1 for farming field, 12.3 ± 9.8–733.8 ± 255 ng m−2 h−1 for grassland sites, and 5.9 ± 12.6–618.6 ± 339 ng m−2 h−1 for water surfaces. Mercury exchange fluxes were generally higher from air/water surfaces than from air/soil surfaces. The mercury negative fluxes were found in tow soil sites at overcast days (mean = −6.4 ± 1.5 ng m−2 h−1). The diurnal and seasonal variations of mercury flux were observed in all sites. The mercury emission responded positively to the solar radiation, but negatively to the relative humidity. The mercury flux from air/soil surfaces was significantly correlated with soil temperature, which was well described by an Arrhenius-type expression with activation energy of 31.1 kcal mol−1. The annual mercury emission to the atmosphere from land surface is about 1.787 t of mercury in Chongqing.  相似文献   

17.
Distribution of organochlorine pesticides in soils from South Korea   总被引:23,自引:0,他引:23  
Kim JH  Smith A 《Chemosphere》2001,43(2):137-140
Soil samples were collected from rice growing and industrial areas in South Korea and analysed for organochlorine pesticide content using gas chromatography with electron capture detection. The soils were monitored for the presence of 18 organochlorine pesticides. The main pesticides found were gamma- and delta-hexachlorocyclohexane, heptachlor epoxide and dieldrin. The range of concentrations, for each compound, was respectively, 0.17-0.94, 0.77-2.97, 1.38-48.0 and 0.32-0.49 ng/g soil. The highest values were found in soil obtained from rice fields indicating that, although the use of organochlorine pesticides has been discontinued since 1980, substantial concentrations of residues particularly the oxidised form of heptachlor remain in the soil.  相似文献   

18.
Isoprene emission from tropical trees in Okinawa Island, Japan   总被引:1,自引:0,他引:1  
This study surveyed isoprene emission from 42 indigenous and exotic tropical trees in subtropic Okinawa, Japan. Of the 42 trees studied, 4 emitted isoprene at a rate in excess of 20 μg g−1 h−1, and 28 showed the rates of 1–10 μg g−1 h−1. The remainder emitted less than 1 μg g−1 h−1. The majority of trees in this study may therefore fall within the lower emitting species. However, species in Moraceae that is indigenous in Okinawa emitted isoprene at relatively higher rates with an average of 14.2 μg g−1 h−1. The highest emission rate of 107.1 μg g−1 h−1 for Ficus virgata yielded the area basis rate of 47.4 nmol m−2 s−1, which is almost equivalent to the rate of high emitting species. Furthermore, a linear relationship between light intensity and isoprene emission was noted with Ficus virgata up to 1700 μmol m−2 s−1. These findings may show the potential importance of subtropical areas as sources of isoprene to the atmosphere.  相似文献   

19.
Abstract

A method is described for the determination of organochlorine and organophosphate pesticide residues in fruits, vegetables and sediments. The concentrated solvent extract was sealed in a polymeric membrane tube, dialysed in cyclohexane and the solvent replaced with hexane. The organophosphates were analysed on a specific thermionic detector without further clean‐up. For the organochlorine pesticides the extract was eluted through 3 g of alumina and analysed on GC/ECD. The clean‐up for sediment extract was carried out on a10 g alumina column with 100 mL hexane containing 5% acetone and the eluate was concentrated to 5 mL.

The detection limit for organophosphates on a 40 g sample and a final volume of 10 mL was on the average 0.01 mg/kg. The detection limit for organochlorine pesticides, with the final volume of 25 mL, was 0.005 mg/kg for all pesticides except for p,p'‐DDT and endosulfan sulphate, which was 0.01 mg/kg.

The detection limit for oganochlorine pesticides in sediment, with the final volume of 2 mL, was less than 1 μg/kg and for organophosphate pesticides less than 10 μg/kg when the final volume was made to 0.5 mL. At the detection limits the method produced a very high coefficient of variation for both organochlorine and organophosphate pesticides.  相似文献   

20.
A method is described for the determination of organochlorine and organophosphate pesticide residues in fruits, vegetables and sediments. The concentrated solvent extract was sealed in a polymeric membrane tube, dialysed in cyclohexane and the solvent replaced with hexane. The organophosphates were analysed on a specific thermionic detector without further clean-up. For the organochlorine pesticides the extract was eluted through 3 g of alumina and analysed on GC/ECD. The clean-up for sediment extract was carried out on a 10 g alumina column with 100 mL hexane containing 5% acetone and the eluate was concentrated to 5 mL. The detection limit for organophosphates on a 40 g sample and a final volume of 10 mL was on the average 0.01 mg/kg. The detection limit for organochlorine pesticides, with the final volume of 25 mL, was 0.005 mg/kg for all pesticides except for p,p'-DDT and endosulfan sulphate, which was 0.01 mg/kg. The detection limit for organochlorine pesticides in sediment, with the final volume of 2 mL, was less than 1 microgram/kg and for organophosphate pesticides less than 10 micrograms/kg when the final volume was made to 0.5 mL. At the detection limits the method produced a very high coefficient of variation for both organochlorine and organophosphate pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号