首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
为了解湘西花垣县兴银锰业周边土壤重金属污染状况及优势植物蓄积特征,采集了当地空心莲子草(Alternanthera philoxeroides)、窃衣(Torilis scabra)、商陆(Phytolacca acinosa Roxb.)、五月艾(Artemisia indica)、蒿草(Kobresia)、川莓(Rubus setchuenensis)等6种优势植物,根际土壤及5~10 m范围内未长植物的裸露土壤进行了研究。结果表明,研究区土壤主要存在Pb、Zn、Cu、Mn、Cd等污染,土壤中Fe、Cr污染程度处于相对安全等级,裸露土壤单因子污染指数和内梅罗综合污染指数高于根际土壤;6种优势植物对重金属的富集量未超出临界值,对重金属具有较强的转运能力;植物根际土壤中真菌、细菌、放线菌数分别为裸露土壤中真菌、细菌、放线菌数的1.19~2.19倍、1.33~1.72倍、1.02~1.52倍。  相似文献   

2.
重金属污染废弃地修复植物种类的筛选与评价   总被引:3,自引:0,他引:3  
基于修复被重金属污染土壤的优良植物的特征,并结合前人的研究成果,对修复被Cd、Pb、Zn、Cu、Mn污染土壤的植物进行了罗列与分析,筛选出了一些可以应用于修复因重金属污染而废弃土地的、且生态恢复生长快、生物量大、抗逆性强、富集重金属多的植物。  相似文献   

3.
为筛选适合山西当地气候与土壤条件的重金属耐性植物,于山西某铬渣堆场采集草本植物及表层土壤(0~20cm)样品,从中选取6种主要植物品种,测定植物地上部分、根部及土壤中4种重金属(Cu、Zn、Pb和Cr)含量,分析6种植物对重金属的富集特征。结果表明:铬渣堆场土壤Cr污染严重,平均质量浓度为2 207mg/kg,是山西省土壤背景值(58mg/kg)的38.1倍,是《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)规定风险筛选值(250mg/kg)的8.8倍。选取的6种植物中,狼尾草(Pennisetum alopecuroides (L.)Spreng.)、羊草(Leymus chinensis (Trin.)Tzvel.)和狗牙根(Cynodon dactylon (L.)Pers.)等植物体内Cr含量相对较高,表现出较强的Cr吸收能力。根据植物对重金属的吸收机制,羊草、狼尾草和狗牙根属于根部囤积性植物;狗尾草(Setaria viridis (L.)Beauv.)、虎尾草(Chloris virgate Sw.)和牛筋草(Eleusine indica (L.)Gaertn.)属于Cr规避型植物。  相似文献   

4.
锑矿区土壤重金属污染及优势植物对重金属的富集特征   总被引:4,自引:0,他引:4  
通过野外调查采样,分析了冷水江锑矿区4个采样点土壤和优势植物中重金属含量,以及矿区生长的5种优势植物对Sb、As、Cd、Pb、Cu和Zn的的吸收与富集能力及其富集特性。结果表明,矿区土壤中6种重金属元素的平均含量均超出湖南省土壤背景值和全国土壤背景值,土壤受Sb污染最严重,其次是Cd、As的污染。5种优势植物淡竹叶、苎麻、芒草、狗尾草和白背叶体内Sb、As的含量都超过正常范围,具有修复矿区土壤Sb、As污染的潜力。其中苎麻对Sb的富集系数和转运系数均大于1,满足Sb超富集植物的基本特征,可作为生态恢复的先锋植物;芒草对Cd的富集系数和转运系数都大于1,对重金属有较强的耐性,作为重金属污染的修复植物具有较好的应用前景。  相似文献   

5.
土壤重金属的植物污染化学研究进展   总被引:1,自引:0,他引:1  
针对中国土壤重金属污染加剧的趋势,为改善土壤环境质量和保障农产品安全,提出了土壤重金属的植物污染化学研究领域.结合多年的研究工作,从土壤重金属的植物根际化学行为、土壤重金属的植物吸收与解毒机制和重金属污染土壤的植物-微生物交互作用等方面简要阐述了土壤-植物系统中重金属的分布、存在形态、迁移转化、累积及生物学效应和控制规律的研究进展,并对将来的植物污染化学理论研究提出了展望.  相似文献   

6.
小兴安岭地区人烟稀少,植被发育较好,受人类活动影响较小。1984年我们对该区土壤、植物、水体中Fe、Mn、Zn、Cr、Cu、Co、Cd、As、Ni、Pb10种重金属元素进行了调查研究,探讨不同环境要素之间以及沉积物中不同元素之间的关系。 一、小兴安岭地区环境中的重金属 本文研究了小兴安岭地区土壤、植物和水体中的重金属,土壤主要是暗棕色森林土,植物采用本区优势树种红松(Pinus ko-raiensis)、蒙古栎(Quereus mongolica)、糠椴(Tiliamand shurica)和兴安白桦(Betula plalyphylla),水体包括河水和河底沉积物.为了研究土壤与植物中元素含量关系,土壤和植物同步采样。 1.土壤中重金属含量特征 暗棕色森林土是重要的林业土壤资源,在小兴安岭地区,其分布面积约占土壤总面  相似文献   

7.
兰坪铅锌矿区不同污染梯度下优势植物的重金属累积特征   总被引:5,自引:0,他引:5  
对兰坪铅锌矿区污染程度不同的3个样地(云南松林、魁蒿群落和马桑灌丛)进行植被调查,选择其中9种共有的自然生长的优势草本植物为研究对象,测定了土壤及植物体的重金属含量。结果显示,3个样地土壤Cu、Cd、Pb和Zn等4种重金属含量均表现为马桑灌丛>魁蒿群落>云南松林;植物体内重金属积累呈现出随着土壤污染程度增加而增加的趋势;所选择的9种植物均不符合超富集植物的标准,依据不同的耐性机制将9种植物分为3类,野棉花能较强吸收土壤中重金属,并转移到地上部分,属于富集型植物;西南金丝梅、倒提壶、长籽柳叶菜、魁蒿、翻白叶和四脉金茅吸收的重金属主要积累在根部,属于根部囤积型植物;尼泊尔蓼和中华山蓼体内重金属含量较低,属于规避型植物。讨论了利用这些植物进行矿山治理。  相似文献   

8.
将两种有机肥料黄腐酸钾和紫云英(Astragalus sinensis)分别与重金属超积累植物东南景天(Sedum alfredii)联用修复重金属污染土壤,研究有机肥料对污染土壤重金属生物有效性、形态以及东南景天重金属积累量的影响。结果显示,修复0~4个月,施加有机肥料对土壤重金属生物有效性均有一定的促进作用;而修复4~8个月,土壤重金属向可氧化态和残渣态转化,生物有效性受到抑制。从东南景天地上部重金属积累量看,修复0~4个月,施加0.3%(质量分数)黄腐酸钾促进东南景天对锌、镉的吸收积累,锌、镉积累量分别比对照提高了280.37%、265.44%;而修复4~8个月,东南景天地上部重金属积累量相较对照均下降。由此可见,提升重金属污染土壤的植物修复效果,还需考虑修复周期的影响。  相似文献   

9.
修复植物热解半焦中重金属形态分布研究   总被引:1,自引:0,他引:1  
采用欧盟标准物质局(BCR)连续提取法对修复植物长香谷稻秆热解半焦中重金属元素Cd、Pb、Mn和Cu的赋存形态进行研究.结果表明:(1)用BCR连续提取法分析修复植物热解半焦中Cd、Pb、Mn和Cu的赋存形态是可行和有效的.(2)半焦中Pb,Mn和Cu在900℃时的不稳定态比400℃时分别降低了50.8、38.0、28...  相似文献   

10.
兰坪铅锌尾矿区土壤与自然发生的5种植物的研究   总被引:8,自引:0,他引:8  
对兰坪铅锌尾矿区的土壤和自然发生植物的调查分析发现:该尾矿区土壤污染以Cd最为严重,是云南土壤背景值的350倍,其次是以Pb、Zn为主.尾矿区重金属含量随堆积时间而减少,尾矿边缘重金属含量明显低于中心.尾矿区自然发生多种植物类群,绝大多数植物类群零星发生,仅有5种植物为优势类群.5种优势植物对铅锌富集和耐性研究表明,这...  相似文献   

11.
Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P相似文献   

12.
The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

13.

Background, aim, and scope  

Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant.  相似文献   

14.
重金属污染土壤中提高植物提取修复功效的探讨   总被引:20,自引:0,他引:20  
随着对重金属超积累植物研究的加深 ,用植物提取修复技术来改良重金属污染的土壤已逐步进入实用阶段。本文所探讨的提高此技术功效的方法基于两个方面 :提高土壤溶液中重金属的浓度 ,促进植物对重金属的吸收 ;根据已了解的超积累的生理机制可能采取的一些措施  相似文献   

15.
The effects of mycorrhizal fungi and other soil microorganisms on growth of two grasses, Andropogon gerardii Vitm. and Festuca arundinacea Schreb., in heavy metal-contaminated soil and mine tailings were investigated. A. gerardii is highly dependent on mycorrhizal fungi in native prairie, while F. arundinacea is a facultative mycotroph and relies on mycorrhizal symbiosis only in extremely infertile soils. Regardless of microbial amendments, neither plant species was able to establish and grow in the mine tailings. Both plant species grew in the moderately contaminated or non-contaminated soils, although A. gerardii grew in these soils only when mycorrhizal. Other soil microbes significantly improved growth of A. gerardii only in uncontaminated soil, but to a lesser extent than mycorrhizae. Although F. arundinacea was more highly colonized by mycorrhizal fungi than A. gerardii, neither microbial amendment affected growth of fescue in any soil. In several treatments mycorrhizal fungi adapted to uncontaminated soil stimulated plant growth more than mycorrhizae adapted to the moderately contaminated soil. However, mycorrhizal fungi adapted to contaminated soil did not increase the productivity of plant growth in contaminated soil more than fungi adapted to uncontaminated soil. A. gerardii plants inoculated with mycorrhizal fungi retained more Zn in roots than in shoots, confirming earlier reports that mycorrhizal fungi alter the translocation pattern of heavy metals in host plants. In contrast, mycorrhizae did not affect translocation patterns in F. arundinaceae, suggesting that the mycorrhizal dependence of a plant species is correlated with the retention of metals in roots. The correlation between mycorrhizal dependence of a plant species and mycorrhizal alteration of translocation pattern may also explain the inconsistent reports of mycorrhizal effects on translocation of heavy metals in plants. Plant response to mycorrhizal symbiosis may therefore provide a useful criterion for the selection of the plant species to be used in revegetation of contaminated sites.  相似文献   

16.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

17.

The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

18.
粘土矿物修复重金属污染土壤   总被引:27,自引:1,他引:27  
简要介绍了我国土壤重金属污染的现状与危害.通过粘土矿物在重金属污染土壤中净化功能的阐述,提出利用粘土矿物修复土壤重金属污染的观点.继而从天然和改性粘土矿物特性,叙述了粘土矿物修复土壤重金属污染的机制与应用进展及其影响因素.最后讨论了粘土矿物在修复土壤重金属污染过程中值得注意的几个问题,并展望了粘土矿物在该领域应用中的发展方向.  相似文献   

19.
Goal, Scope and Background Rapid urbanization and the expansion of industrial activities in the past several decades have led to large increases in emissions of pollutants in the Pearl River Delta of south China. Recent reports have suggested that industrial emission is a major factor contributing to the damages in current natural ecosystem in the Delta area. Tree barks have been used successfully to monitor the levels of atmospheric metal deposition in many areas, but rarely in China. This study aimed at determining whether atmospheric heavy metal deposition from a Pb-Zn smeltery at Qujiang, Guangdong province, could be accurately reflected both in the inner bark and the outer bark of Masson pine (Pinus massoniana L.). The impact of the emission from smeltery on the soils beneath the trees and the relationships of the concentrations between the soils and the barks were also analyzed. Methods Barks around the bole of Pinus massoniana from a pine forest near a Pb-Zn smeltery at Qujiang and a reference forest at Dinghushan natural reserve were sampled with a stainless knife at an average height of 1.5 m above the ground. Mosses and lichens on the surface barks were cleaned prior to sampling. The samples were carefully divided into the inner bark (living part) and the outer bark (dead part) in the laboratory, and dried and ground, respectively. After being dry-ashed, the powder of the barks was dissolved in HNO3. The solutions were analyzed for iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni) and cobalt (Co) by inductively coupled plasmas emission spectrometry (ICP, PS-1000AT, USA) and Cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrometry (GFAAS, ZEENIT 60, Germany). Surface soils (0–10 cm) beneath the sample trees were also collected and analyzed for the selected metals. Results and Discussion Concentrations of the selected metals in soils at Qujiang were far above their environmental background values in the area, except for Fe and Mn, whilst at Dinghushan, they were far below their background values, except for Cd and Co. Levels of the metals, in particular Pb and Zn, in the soils beneath the sample trees at Qujiang were higher than those at Dinghushan with statistical significance. The result suggested that the pine forest soils at Qujiang had a great input of heavy metals from wet and dry atmospheric deposition, with the Pb-Zn smeltery most probably being the source. Levels of Cu, Fe, Mn, Zn, Ni and Pb at Qujiang, both in the inner and the outer bark, were statistically higher than those at Dinghushan. Higher concentrations of Pb, Fe, Zn and Cu may come from the stem-flow of elements leached from the canopy, soil splash on the 1.5 m height and sorption of metals in the mosses and lichens growing on the bark, which were direct or indirect results from the atmospheric deposition. Levels of heavy metals in the outer barks were associated well with the metal concentrations in the soil, reflecting the close relationships between the metal atmospheric deposition and their accumulation in the outer bark of Masson pine. The significant (p<0.01) correlations of Fe-Cu, Fe-Cr, Fe-Pb, Fe-Ni, Pb-Ni, and Pb-Zn in the outer barks at Qujiang again suggested a common source for the metals. The correlation only occurred between Pb and Ni, Cd and Co in the outer barks at Dinghushan, which suggested that those metals must possibly have other uncommon sources. Conclusions Atmospheric deposition of the selected metals was great at Qujiang, based on the levels in the bark of Pinus massoniana and on the concentrations in the soils beneath the trees compared with that at Dinghushan. Bark of Pinus massoniana, especially the outer bark, was an indicator of metal loading at least at the time of sampling. Recommendations and Perspectives The results from this study and the techniques employed constituted a new contribution to the development of biogeochemical methods for environmental monitoring particularly in areas with high frequency of pollution in China. The method would be of value for follow up studies aimed at the assessment of industrial pollution in other areas similar with the Pearl River Delta.  相似文献   

20.
EDTA及其回收溶液治理重金属污染土壤的研究   总被引:4,自引:0,他引:4  
试验结果表明,EDTA能够有效地萃取土壤重金属,由于其价格较贵和不易被降解等特点,限制了它的广泛运用.在运用MINTEQA2模型对萃取液中重金属离子形态分析的基础上,选用Na2S沉淀法将重金属从EDTA萃取液中有效分离.同时将回收的EDTA连续进行萃取土壤重金属,由于回收EDTA浓度下降的原因,其效果比新鲜EDTA的要稍微差一点,但从经济和效率上来说,仍旧可以用来治理重金属污染的土壤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号