首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.  相似文献   

2.
During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.  相似文献   

3.
Bioremediation of trace metals and radionuclides in groundwater may require the manipulation of redox conditions via the injection of a carbon source. For example, after nitrate has been reduced, soluble U(VI) can be reduced simultaneously with other electron acceptors such as Fe(III) or sulfate to U(IV), which may precipitate as a solid (uraninite).To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a time-dependent one-dimensional reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. This set of equations is solved numerically, using a finite difference approximation. The redox conditions of the domain are characterized by estimating the pE, based on the concentration of the dominant terminal electron acceptor and its corresponding reduced species. This pE and the concentrations of relevant species are then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration. A global uncertainty assessment, determined by Random Sampling High Dimensional Model Representation (RS-HDMR), was performed to attain a phenomenological understanding of the origins of output variability and to suggest input parameter refinements as well as to provide guidance for field experiments to improve the quality of the model predictions. By decomposing the model output variance into its different input contributions, RS-HDMR can identify the model inputs with the most influence on various model outputs, as well as their behavior pattern on the model output. Simulations are performed to illustrate the effect of biostimulation on the fate of uranium in a saturated aquifer, and to identify the key processes that need to be characterized with the highest accuracy prior to designing a uranium bioremediation scheme.  相似文献   

4.
In this study we investigated the effect of uranium on the growth of the bacterium Thermus scotoductus strain SA-01 as well as the whole cell U(VI) reduction capabilities of the organism. Also, site-directed mutagenesis confirmed the identity of a protein capable of a possible alternative mechanism of U(VI) reduction. SA-01 can grow aerobically in up to 1.25 mM uranium and has the capability to reduce low levels of U(VI) in under 20 h. TEM analysis performed on cells exposed to uranium showed extracellular and membrane-bound accumulation of uranium. The reductase-like protein was surprisingly identified as a peptide ABC transporter, peptide-binding protein. This study showcases the concept of protein promiscuity, where this protein with a distinct function in situ can also have the unintended function of a reactant for the reduction of U(VI).  相似文献   

5.
Roden EE  Scheibe TD 《Chemosphere》2005,59(5):617-628
A conceptual model and numerical simulations of bacterial U(VI) reduction in fractured subsurface sediments were developed to assess the potential feasibility of biomineralization at the fracture/matrix interface as a mechanism for immobilization of uranium in structured subsurface media. The model envisions flow of anaerobic groundwater, with or without acetate as an electron donor for stimulation of U(VI) reduction by dissimilatory metal-reducing bacteria (DMRB), within mobile macropores along a one-dimensional flow path. As the groundwater moves along the flow path, U(VI) trapped in the immobile mesopore and micropore domains (the sediment matrix) becomes desorbed and transferred to the mobile macropores (fractures) via a first-order exchange mechanism. By allowing bacterial U(VI) reduction to occur in the mesopore domain (assumed to account for 12% of total sediment pore volume) according to experimentally-determined kinetic parameters and an assumed DMRB abundance of 10(7) cells per cm3 bulk sediment (equivalent to 4 mg of cells per dm3 bulk sediment), the concentration of U(VI) in the macropore domain was reduced ca. 10-fold compared to that predicted in the absence of mesopore DMRB activity after a 6-month simulation period. The results suggest that input of soluble electron donors over a period of years could lead to a major redistribution of uranium in fractured subsurface sediments, converting potentially mobile sorbed U(VI) to an insoluble reduced phase (i.e. uraninite) in the mesopore domain that is expected to be permanently immobile under sustained anaerobic conditions.  相似文献   

6.
Natural analogues allow scientists to investigate biogeochemical processes relevant to radioactive waste disposal that occur on time scales longer than those that may be studied by time-limited laboratory experiments. The Palmottu U-Th deposit in Finland and the Bangombé natural nuclear reactor in Gabon involve the study of natural uranium, and are both considered natural analogues for subsurface radioactive waste disposal. The microbial population naturally present in groundwater may affect the redox conditions, and hence, the radionuclide solubility and migration. Therefore, groundwater samples from the two sites were investigated for microbial populations. The total numbers of cells ranged from 10(4) to 10(6) cells ml(-1). Iron-reducing bacteria (IRB) were the largest culturable microbial population in the Palmottu groundwater and were present at up to 1.3 x 10(5) cells ml(-1). Sulfate-reducing bacteria (SRB) and acetogens could also be cultured from the Palmottu groundwater. The numbers of IRB and SRB were largest in groundwater with the lowest uranium concentrations. Removal of dissolved U(VI) from solution was concomitant with the growth of IRB enrichment cultures and the reduction of iron. The redox buffer in the Palmottu groundwater consists of iron and uranium species, both of which are affected by IRB. IRB and aerobic heterotrophs were cultured from the Bangombé groundwater, where redox potentials are buffered by iron and organic carbon species. Microbial populations similar to those found at Palmottu and Bangombé are found throughout the Fennoscandian Shield, a potential host rock for subsurface radioactive waste disposal. These results confirm that microorganisms can be expected to play a role in stabilizing radioactive waste disposed of in the subsurface by lowering redox potential and immobilizing radionuclides.  相似文献   

7.
Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.  相似文献   

8.
Two sites representing different aquifer types, i.e., Dommel (sandy) and Flémalle (gravelly loam) along the Meuse River, have been selected to conduct microcosm experiments. Various conditions ranging from aerobic over nitrate- to sulphate reducing were imposed. For the sandy aquifer, nitrate reducing conditions predominated, which specifically in the presence of a carbon source led to pH increases and enhanced Zn removal. For the calcareous gravelly loam, sulphate reduction was dominant resulting in immobilization of both Zn and Cd. For both aquifer types and almost all redox conditions, higher arsenic concentrations were measured in the groundwater. Analyses of different specific microbial populations by polymerase chain reaction (PCR) revealed the dominance of denitrifiers for the Dommel site, while sulfate reducing bacteria (SRB) were the prevailing population for all redox conditions in the Flémalle samples.  相似文献   

9.
This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.  相似文献   

10.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   

11.
Microbial reactions play an important role in regulating pore water chemistry as well as secondary mineral distribution in many subsurface systems and, therefore, may directly impact radionuclide migration in those systems. This paper presents a general modeling approach to couple microbial metabolism, redox chemistry, and radionuclide transport in a subsurface environment. To account for the likely achievement of quasi-steady state biomass accumulations in subsurface environments, a modification to the traditional microbial growth kinetic equation is proposed. The conditions for using biogeochemical models with or without an explicit representation of biomass growth are clarified. Based on the general approach proposed in this paper, the couplings of uranium reactions with biogeochemical processes are incorporated into computer code BIORXNTRN Version 2.0. The code is then used to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium(VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.  相似文献   

12.
In situ fixation of metals in soils using bauxite residue: biological effects   总被引:17,自引:0,他引:17  
Soils polluted with heavy metals can cause phytotoxicity and exhibit impared microbial activities. In this paper we evaluate the responses of different biological endpoints to in situ remediation processes. Three soil amendments (red mud, beringite and lime) were applied to two soils polluted by heavy metals. Oilseed rape, wheat, pea and lettuce were grown successively in pots on the untreated and amended soils and their yield and metal uptake were determined. A suite of microbial tests (lux-marked biosensors, Biolog and soil microbial biomass) were performed to determine the effect of the soil amendments on the functionality and size of the soil microbial community. In both soils all three amendments reduced phytotoxicity of heavy metals, enhanced plant yields and decreased the metal concentrations in plants. The red mud treatment also increased soil microbial biomass significantly. The microbial biosensors responded positively to the remediation treatments in the industrially-contaminated soil used in the experiment. Red mud applied at 2% of soil weight was as effective as beringite applied at 5%. The results also showed that since the biological systems tested respond differently to the alleviation of metal toxicity, a suite of biological assays should be used to assess soil remediation processes.  相似文献   

13.
Shin KH  Cha DK 《Chemosphere》2008,72(2):257-262
Microbial reduction of nitrate in the presence of nanoscale zero-valent iron (NZVI) was evaluated to assess the feasibility of employing NZVI in the biological nitrate treatment. Nitrate was completely reduced within 3 d in a nanoscale Fe(0)-cell reactor, while only 50% of the nitrate was abiotically reduced over 7 d at 25 °C. The removal rate of nitrate in the integrated NZVI-cell system was unaffected by the presence of high amounts of sulfate. Efficient removal of nitrate by Fe(II)-supported anaerobic culture in 14 d indicated that Fe(II), which is produced during anaerobic iron corrosion in the Fe(0)-cell system, might act as an electron donor for nitrate. Unlike abiotic reduction, microbial reduction of nitrate was not significantly affected by low temperature conditions. This study demonstrated the potential applicability of employing NZVI iron as a source of electrons for biological nitrate reduction. Use of NZVI for microbial nitrate reduction can obviate the disadvantages associated with traditional biological denitrification, that relies on the use of organic substrates or explosive hydrogen gas, and maintain the advantages offered by nano-particle technology such as higher surface reactivity and functionality in suspensions.  相似文献   

14.
Chang IS  Kim BH 《Chemosphere》2007,68(2):218-226
Electroplating wastewater (EW) containing heavy metals was treated by a two-stage packed-bed reactor system. The EW was highly contaminated with hexavalent chromium and other heavy metals as well as sulfate because sulfuric acid had been mainly used to polish the surface of metals to be electroplated. This acidic EW was effectively neutralized in an alkaline reactor where limestone had been packed. The neutralized wastewater together with organic wastewater from a starch-processing factory (SPW) was fed to a bioreactor packed with waste biomass. The SPW was used to supplement the electron donor in the sulfidogenic bioreactor. During the whole operation, we investigated the stoichiometry of electron to see what could be a major factor to remove Cr in the wastewater. The removal rates of sulfate and Cr(VI) were dependent on the consumption rate of organic materials in the wastewater. The stoichiometric studies also showed that about 63% of electrons from oxidation of organic materials were used to reduce sulfate. When the electrons of sulfide oxidation to elemental sulfur was at least 1.3 times higher than that of Cr(VI) reduction to Cr(III), Cr(VI) was completely removed. This result suggests that Cr(VI) reduction can be expected to take place under sulfate-rich anaerobic conditions, and sulfide produced by sulfate reducing bacteria could be used to immobilize soluble chromium through Cr(VI) reduction.  相似文献   

15.
Environmental Science and Pollution Research - Remediation materials are the most critical factors for in situ immobilization of soil contaminated by heavy metals. In this study, in order to...  相似文献   

16.
Bacterial interactions with uranium: An environmental perspective   总被引:2,自引:0,他引:2  
The presence of actinides in radioactive wastes is of major concern because of their potential for migration from the waste repositories and long-term contamination of the environment. Studies have been and are being made on inorganic processes affecting the migration of radionuclides from these repositories to the environment but it is becoming increasingly evident that microbial processes are of importance as well. Bacteria interact with uranium through different mechanisms including, biosorption at the cell surface, intracellular accumulation, precipitation, and redox transformations (oxidation/reduction). The present study is intended to give a brief overview of the key processes responsible for the interaction of actinides e.g. uranium with bacterial strains isolated from different extreme environments relevant to radioactive repositories. Fundamental understanding of the interaction of these bacteria with U will be useful for developing appropriate radioactive waste treatments, remediation and long-term management strategies as well as for predicting the microbial impacts on the performance of the radioactive waste repositories.  相似文献   

17.
Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV).  相似文献   

18.
Gibney BP  Nüsslein K 《Chemosphere》2007,70(2):329-336
Changes in microbial community composition and activity were related to geochemical conditions favoring arsenic sequestration in sediments collected from the urban, arsenic-contaminated Upper Mystic Lake. After amendment with nitrate, >94% total soluble arsenic is sequestered by Fe(III)-(oxy)hydroxides generated in live sediments. Of this sequestered arsenic, >75% existed as As(III), indicating As redox state alone is not responsible for changes in mobility. Arsenic sequestration was concurrent with the microbial respiration of nitrate as indicated by steady state hydrogen concentration and the presence of organisms similar to nitrate-reducing, iron-oxidizing bacteria belonging to the genus Dechloromonas in 16S rDNA clone libraries.  相似文献   

19.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

20.
This work addresses the effect that plants (Typha latifolia and Carex lurida) have on the reduction of Cr(VI) in wetland sediments. Experiments were carried out using tubular microcosms, where chemical species were monitored along the longitudinal flow axis. Cr(VI) removal was enhanced by the presence of plants. This is explained by a decrease in the redox potential promoted by organic root exudates released by plants. Under these conditions sulfate reduction is enhanced, increasing the concentration of sulfide species in the sediment pore water, which reduce Cr(VI). Evapotranspiration induced by plants also contributed to enhance the reduction of Cr(VI) by concentrating all chemical species in the sediment pore water. Both exudates release and evapotranspiration have a diurnal component that affects Cr(VI) reduction. Concentration profiles were fitted to a kinetic model linking sulfide and Cr(VI) concentrations corrected for evapotranspiration. This expression captures both the longitudinal as well as the diurnal Cr(VI) concentration profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号