首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.  相似文献   

2.
Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of previously present nitrate and anaerobic conditions in pristine groundwater above the plume. Stable carbon isotope (delta13C) values of methane confirm anaerobic methane oxidation immediately below the fringe zone, presumably coupled to reduction of sulfate, desorbed from iron oxide. Methane must be the principle reductant consuming soluble electron-acceptors in pristine groundwater, thereby limiting NA for other solutes including organic micro-pollutants at the fringe of this landfill leachate plume.  相似文献   

3.
This paper describes the modeling of the hydrogeochemical effects of deep well recharge of oxic water into an anoxic pyrite-bearing aquifer. Kinetic expressions have been used for mineral dissolution-precipitation rates and organic matter oxidation. Hydrological and chemical parameters of the model were calibrated to field measurements. The results showed that oxidation of pyrite (FeS(2)) and, to a lesser extent, organic matter dominate the changes in quality of the recharged water during its passage through the aquifer. The recharge leads to the consumption of oxygen and nitrate and the formation of sulfate and ferrihydrite. Complexation reactions, cation exchange and precipitation and dissolution of calcite, siderite and rhodochrosite were also identified through the modeling. Despite problems of non-uniqueness of the calibrated parameters, the model was used successfully to depict the geochemical processes occurring in the aquifer. Non-uniqueness can be avoided by constraining the model as much as possible to measurements and/or data from literature, although they cannot be considered always as fixed values and should be considered as stochastic variables instead.  相似文献   

4.
Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH)3(a), and Fe(OH)3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO4(2-) transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.  相似文献   

5.
The major ion and trace metal geochemistry of a septic system plume in a shallow sand aquifer was characterized to assess geochemical processes controlling the transport of nutrients and their release to a nearby wetland. The plume was generated from a 16-year-old tile bed, and is more than 60 m long, 40 m wide and 7 m thick. The groundwater pH at the site is near neutral, but up to 0.4 units lower in the plume core as a result of H+ generated from NH3 and DOC oxidation in the unsaturated zone. The plume can be divided into distinct redox zones, which show differences in nutrient mobility. Proximal to the tile bed, there is a shallow suboxic zone, with intermediate Eh values (>400 mV), low concentrations of dissolved oxygen (<1.0 mg/l), and elevated concentrations of Mn (1–3 mg/l) and nutrients (10–80 mg/l NO3–N, 1–15 mg/l NH3–N, 0.1–1.5 mg/l PO4–P, 6–13 mg/l dissolved organic carbon). At the base of the aquifer, there is a reduced zone (Eh<200 mV) with elevated concentrations of Fe (1–14 mg/l), PO4 and NH3, but negligible concentrations of NO3 (<0.01 mg/l N). Distal from the tile bed, the shallow groundwater is suboxic to oxic, and has elevated concentrations of NO3 and NH3, but negligible PO4. In the lower reduced zone, elevated concentrations of PO4 occur up to 60 m away. The release of groundwater containing even very low concentrations of PO4 (<0.02 mg/l P) can lead to the development of eutrophic conditions in surface water bodies. Geochemical calculations indicate that, in the Mn-rich zone, the groundwater is close to saturation or supersaturated with respect to hydroxyapatite, rhodochrosite, calcite and ferrihydrite. In the reduced zone, the groundwater is close to saturation or supersaturated with respect to hydroxyapatite, vivianite, calcite and siderite. Formation of these phases, or related phases, are likely limiting the concentrations of dissolved PO4, Fe and Mn and controlling the geochemical evolution of the plume.  相似文献   

6.
Leakage of saline-alkaline tank waste solutions often creates a serious environmental contamination problem. To better understand the mechanisms controlling the fate of such waste solutions in the Hanford vadose zone, we simulated reactive transport in columns designed to represent local site conditions. The Pitzer ion interaction module was used, with principal geochemical processes considered in the simulation including quartz dissolution, precipitation of brucite, calcite, and portlandite, multi-component cation exchange, and aqueous complexation reactions. Good matches were observed between the simulated and measured column data at ambient temperature ( approximately 21 degrees C). Relatively good agreement was also obtained at high temperature ( approximately 70 degrees C). The decrease of pH at the plume front is examined through formation of secondary mineral phases and/or quartz dissolution. Substantial formation of secondary mineral phases resulting from multi-component cation exchange suggests that these phases are responsible for a decrease in pH within the plume front. In addition, a sensitivity analysis was conducted with respect to cation exchange capacity, selectivity coefficient, mineral assemblage, temperature, and ionic strength. This study could serve as a useful guide to subsequent experimental work, to thermodynamic models developed for the concentrated solutions at high ionic strength and to other types of waste plume studies.  相似文献   

7.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

8.
A multicomponent reactive transport model as presented by MacQuarrie and Sudicky [MacQuarrie, K.T.B., Sudicky, E.A., this volume. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: I. Model formulation and performance, J. Contam. Hydrol.] is applied to a well-studied wastewater plume in a sandy aquifer near Cambridge, Ontario. Domestic wastewater is released into the unsaturated zone via a drain field at a depth of about 0.8 m. The physical transport parameters for the model are obtained by simulating a non-reactive solute, while kinetic input data for the nitrogen and carbon reaction network are obtained from the literature. The model shows that the wastewater-loading rate has little influence on the moisture content in the unsaturated zone, thus oxygen diffusion in the air phase is an important transport mechanism. The model results are in general agreement with the field-determined moisture and oxygen profiles near the drain field. The simulation results show that oxidation of ammonium and dissolved organic carbon (DOC) goes to completion in the 1.5-m distance between the drain field and the water table, and that calcite dissolution limits the pH reduction to about 0.2 units. The model-predicted nitrate concentrations in the core of the plume are in the range of 20-25 mg N/l and are in good agreement with the field data. Overall, the results for the major reactive species from the model simulation agree well with the geochemical data obtained below the drain field and it is concluded that the major physical and biochemical processes have been correctly captured in the current model formulation.  相似文献   

9.
Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO(4) reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO(4)-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO(4) in the influent to render the reduction of this species unimportant to the geochemical processes in the column.The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO(3(S))).In the column where significant SO(4) reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO(4) reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO(3(S))). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction.The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO(4) was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column 2. In this column, the total reacted S(-II) estimated from the concentration of dissolved sulfur species was in good agreement with the produced Cr(II)-reducible sulfur in the solid phase. Solid-phase analysis of the sulfur species indicated that up to half of the originally produced FeS may have possibly transformed to FeS(2).  相似文献   

10.
Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Asp? underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.  相似文献   

11.
A landfill leachate affected aquifer was investigated with respect to the geology and sediment geochemistry (solid organic carbon, cation exchange capacity, oxidation capacity, reduced iron and sulfur species) involving 185 sediment samples taken along a 305-m-long and 10–12-m-deep transect downgradient from the landfill. The geology showed two distinct sand layers (upper Quaternary, Weichselian and a lower Tertiary, Miocene) sandwiching thin layers of silt/clay deposits, peat and brown coal. The organic carbon content (TOC) and the cation exchange capacity (CEC) of the sandy sediments were low (TOC, 100–300 μg C (g DW)−1 ; CEC, 0.1–0.5 meq per 100 g DW) and correlated fairly well with the geology. Processes in the contaminant plume caused depletion of oxidation capacity and precipitation of reduced iron and sulfur species. However, some of these parameters were also affected by the geology, e.g. the oxidation capacity (OXC) was significantly higher in the Quaternary layer (OXC, 14–35 μeq g DW−1) than in the Tertiary sand layer (OXC, <5 μeq g DW−1). The intermediate layers (silt/clay and brown coal) have significantly higher values of most of the parameters investigated. This work demonstrates the need for a small scale geological model and a detailed mapping of the geochemistry of the sediments in order to distinguish impacts caused by the contaminant plumes from natural variations in the aquifer geochemistry.  相似文献   

12.
The aim of this study was to characterize the labile part of dissolved organic carbon (DOC) present in groundwater by identification of natural organic carbon substrates and to assess their microbial utilization during aeration of the groundwater. The studied chlorophenol (CP) contaminated groundwater contained 60-2650 micromoll(-1) of DOC of which up to 98.0% were CPs; 1.7% were low-molecular weight organic acids and 0.2% were dissolved free amino acids. Traces of following natural organic carbon substrates were identified: L-alanine, L-isoleucine, L-leucine, L-serine, L-threonine, L-tyrosine, L-valine, L-aspartic, acetic, citric, formic, lactic, malic and oxalic acid. Dissolved oxygen concentration inside the CP-plume was lower (mean 25 micromoll(-1)) than outside of the plume (mean 102 micromoll(-1)). Over a monitoring period of four years the concentrations of CPs, Fe(II) and NH4+ were higher inside than outside of the CP-plume. Oxygen availability within the CP-plume limits in situ biological oxidation of CPs, DOC, NH4+ and Fe(II). The microbial enzymatic hydrolysis rates of 4-methylumbelliferyl and 7-amino-4-methylcoumarin-linked substrates varied from 0.01 to 52 micromoll(-1)h(-1) and was slightly higher inside than outside the plume. Microbial uptake rates of 14C-acetate, 14C-glucose and 14C-leucine were on average 28, 4 and 4 pmoll(-1)h(-1) outside and 17, 25 and 8 pmoll(-1)h(-1) inside the plume, respectively. The indigenous microorganisms were shown able of hydrolysis of dissolved organic matter, uptake and utilization of natural organic carbon substrates. Therefore, the labile part of DOC serves as a pool of secondary substrates beside the CP-contaminants in the groundwater and possibly help in sustaining the growth of CP-degrading bacteria.  相似文献   

13.
Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Marku?ovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (μ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation–equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite?>?pyrite?>?tetrahedrite?>?arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16–8.12) and the waters (pH 7.00–8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu?>?Sb?>?Hg?>?As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52–7.96) and low concentrations of dissolved metal(loid)s (<5–7.0 μg/L Cu, <0.1–0.3 μg/L Hg, 5.0–16 μg/L As, and 5.0–43 μg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.  相似文献   

14.
Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.  相似文献   

15.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   

16.
A field experiment was performed in an aquifer in order to study multicomponent cation-exchange processes under natural flow conditions. The aquifer is a glacial outwash plain with sandy aquifer material having a cation-exchange capacity (CEC) of 1.0 meg/100 g. A continuous injection of groundwater spiked with sodium and potassium as chlorides was accomplished over 37 days to resemble leachate contamination from landfills. The plume was monitored by sampling in a dense spatial network (length 100 m, width 20 m) over a period of 2.5 years in order to obtain breakthrough curves and spatial contour maps of the chemical compounds. Na and especially K showed a substantial retardation caused by cation-exchange processes despite the low CEC of the aquifer material. The average velocity of K+ was only 10% of the velocity of chloride (0.7 m day−1). The relative migration velocity of Na+ was not a constant in the plume, but apparently influenced by dilution. Ca2+ and Mg2+ were expelled from the cation-exchange sites of the aquifer material and subsequently transported with the same velocity as chloride. The breakthrough curves of the various compounds showed multiple peaks and low concentration zones. It was concluded by calculations with PHREEQE that changes in calcite equilibrium may occur in the lower part of the aquifer, while complexation processes seem to be of no importance. Cation exchange is then the most important process in this field experiment, and further evaluation of the data by a geochemical transport model including cation exchange is recommended.  相似文献   

17.
The distillation of acidified coal tars for up to 50 years has given rise to a phenol plume approximately 500 m long, 50 m deep and containing up to 15 g l(-1) dissolved organic carbon (DOC) in the Triassic Sandstones aquifer. A conceptual biogeochemical model based on chemical and microbiological analysis of groundwater samples has been developed as a preliminary to more detailed studies of the controls on natural attenuation. While the development of redox zones and the production of methane and carbon dioxide provide evidence of natural attenuation, it appears that degradation is slow. The existence of sulphate in the plume indicates that this electron acceptor has not been depleted and that consequently methanogenesis is probably limited. Based on a simple estimate of sulphate input concentration, a half-life of about 15 years has been estimated for sulphate reduction. Geochemical modelling predicts that increased alkalinity within the plume has not led to carbonate precipitation, and thus within the limits of accuracy of the measurement, alkalinity may reflect the degree of biodegradation. This implies a loss of around 18% of the DOC over a 30-year period. Despite limited degradation, microbial studies show that there are diverse microbial communities in the aquifer with the potential for both anaerobic and aerobic biodegradation. Microbial activity was found to be greatest at the leading edge of the plume where DOC concentrations are 60 mg l(-1) or less, but activity could still be observed in more contaminated samples even though cells could not be cultured. The study suggests that degradation may be limited by the high phenol concentrations within the core of the plume, but that once diluted by dispersion, natural attenuation may proceed. More detailed studies to confirm these initial findings are identified and form the basis of associated papers.  相似文献   

18.
Long-term column experiments were conducted under different geochemical conditions to estimate the longevity of Fe 0 permeable reactive barriers (PRBs) treating hexavalent chromium (Cr(VI)). Secondary carbonate minerals were precipitated, and their effects on the performance, such as differences in the mechanism for Cr removal and the changes in system hydraulics, were assessed. Sequestration of Cr(VI) occurred primarily by precipitation of Fe(III)-Cr(III) (oxy)hydroxides. Trace amounts of Cr were observed in iron hydroxy carbonate presumably due to substitution of Cr3+ for Fe3+. The formation of Fe(III)-Cr(III) (oxy)hydroxide greatly decreased the reactivity of the Fe 0 and thus resulted in migration of the Cr removal front. Carbonate minerals did not appear to contribute to further passivation with regard to reactivity toward Cr removal; rather, the column receiving high contents of dissolved calcium carbonate showed slightly enhanced Cr removal by means of a higher corrosion rate of Fe 0 and because of sequestration by an iron hydroxy carbonate. Precipitation of carbonates, however, governed other geochemical parameters. The porosity and hydraulic conductivity in the column receiving high contents of dissolved calcium carbonate did not indicate a great loss in system permeability because the accumulation of carbonates declined as the Fe 0 was passivated over time. However, the accumulated carbonates and associated Fe(III)-Cr(III) (oxy)hydroxide could cause problems because the presence of these solids resulted in a decline in flow rate after about 1400 pore volumes of operation.  相似文献   

19.
《Environmental Forensics》2013,14(4):245-253
This article provides context for the ensuing three-part study published in this volume that describes quantitative allocation of mass metal loading to the 20 km groundwater plume in the Pinal Creek alluvial aquifer. The plume resulted from >75 years of copper ore leaching by ferric sulfate and sulfuric acid in the Globe-Miami mining district, Arizona. Geochemical fingerprinting, followed by spatial and temporal analysis of Pinal Creek monitoring well data, identified three distinct source areas and plumes. Each exhibited a unique chlorine-copper-iron chemical signature that resulted from differences in process geochemistry, ore mineralogy, and solution handling. As the acid plume advanced, carbonate buffering capacity was consumed, with concomitant precipitation of metal oxyhydroxides that evolved into acid-bearing aluminum and iron cements. Column experiments, geochemical modeling, and empirical data indicate that dissolution of the residual acidic precipitates will result in asymptotic reductions in metal concentrations, which will affect response costs for up to 140 years after initiation of remedial pumping in the late 1980s. Finally, metal loading to the alluvial aquifer was quantified for each source area using Darcy's Law or flow data combined with the sum of aluminum, copper, iron, manganese, and zinc, which constitute >99% of the total metal mass. Based on this analysis, to date Webster Gulch contributed 94% of the loading, Upper Bloody Tanks Wash contributed 5%, and the Miami Unit contributed 1%. A sensitivity analysis that varied all parameters in the loading calculation by ±20% resulted in only small differences in allocation (±1%) because the large mass released from Webster Gulch (618 kt of metal) dominates the overall allocation.  相似文献   

20.
Water quality in the unsaturated and saturated zones of a waste rock pile containing sulphides was investigated. The main objectives of the project were (1) the evaluation of geochemical trends including the acid mine drainage (AMD)-buffering mechanism and the role of secondary minerals, and (2) the investigation of the use of stable isotopes for the interpretation of physical and geochemical processes in waste rock. Pore water in unsaturated zone was sampled from suction lysimeters and with piezometers in underlying saturated rocks. The investigation revealed strong temporal (dry period vs. recharge period), and spatial (slope vs. central region of pile) variability in the formation of acid mine drainage. The main secondary minerals observed were gypsum and jarosite. There was a higher concentration of gypsum in solid phase at Site TBT than at Site 6, suggesting that part of the gypsum formed at Site 6 in the early stage of AMD has been already dissolved. Formation of secondary minerals contributed to the formation of AMD by opening of foliation planes in waste rock, thus increasing the access of oxidants like O2 and Fe3+ to previously encapsulated pyrite. The behavior of several dissolved species such as Mg, Al, and Fe2+ can be considered as conservative in the leachate. Stable isotopes, deuterium and 18O, indicated internal evaporation within the pile, and were used to trace recharge pulses from snowmelt. Isotope trends for 34S and 18O(SO4) indicated a lack of sulfate reduction and zones of active oxidation of pyrite, respectively. Results of numerical modeling of pyrite oxidation and gas and water transport were consistent with geochemical and isotopic trends and confirmed zones of high evaporation rate within the rock pile close to the slope. The results indicate that physical and chemical processes within the pile are strongly coupled and cannot be considered separately when oxidation rates are high and influence gas transport as a result of heat generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号