首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dijkstra FA  West JB  Hobbie SE  Reich PB  Trost J 《Ecology》2007,88(2):490-500
In nitrogen (N)-limited systems, the potential to sequester carbon depends on the balance between N inputs and losses as well as on how efficiently N is used, yet little is known about responses of these processes to changes in plant species richness, atmospheric CO2 concentration ([CO2]), and N deposition. We examined how plant species richness (1 or 16 species), elevated [CO2] (ambient or 560 ppm), and inorganic N addition (0 or 4 g x m(-2) x yr(-1)) affected ecosystem N losses, specifically leaching of dissolved inorganic N (DIN) and organic N (DON) in a grassland field experiment in Minnesota, USA. We observed greater DIN leaching below 60 cm soil depth in the monoculture plots (on average 1.8 and 3.1 g N x m(-2) x yr(-1) for ambient N and N-fertilized plots respectively) than in the 16-species plots (0.2 g N x m(-2) x yr(-1) for both ambient N and N-fertilized plots), particularly when inorganic N was added. Most likely, loss of complementary resource use and reduced biological N demand in the monoculture plots caused the increase in DIN leaching relative to the high-diversity plots. Elevated [CO2] reduced DIN concentrations under conditions when DIN concentrations were high (i.e., in N-fertilized and monoculture plots). Contrary to the results for DIN, DON leaching was greater in the 16-species plots than in the monoculture plots (on average 0.4 g N x m(-2) x yr(-1) in 16-species plots and 0.2 g N x m(-2) x yr(-1) in monoculture plots). In fact, DON dominated N leaching in the 16-species plots (64% of total N leaching as DON), suggesting that, even with high biological demand for N, substantial amounts of N can be lost as DON. We found no significant main effects of elevated [CO2] on DIN or DON leaching; however, elevated [CO2] reduced the positive effect of inorganic N addition on DON leaching, especially during the second year of observation. Our results suggest that plant species richness, elevated [CO2], and N deposition alter DIN loss primarily through changes in biological N demand. DON losses can be as large as DIN loss but are more sensitive to organic matter production and turnover.  相似文献   

2.
Bracken ME  Jones E  Williams SL 《Ecology》2011,92(5):1083-1093
In order for research into the consequences of biodiversity changes to be more applicable to real-world ecosystems, experiments must be conducted in the field, where a variety of factors other than diversity can affect the rates of key biogeochemical and physiological processes. Here, we experimentally evaluate the effects of two factors known to affect the diversity and composition of intertidal seaweed assemblages--tidal elevation and herbivory--on nitrate uptake by those assemblages. Based on surveys of community composition at the end of a 1.5-year press experiment, we found that both tide height and herbivores affected seaweed community structure. Not surprisingly, seaweed species richness was greater at lower tidal elevations. Herbivores did not affect richness, but they altered the types of species that were present; seaweed species characterized by higher rates of nitrate uptake were more abundant in herbivore-removal plots. Both tide height and herbivores affected nitrate uptake by seaweed assemblages. Individual seaweed species, as well as entire seaweed assemblages, living higher on the shore had greater rates of biomass-specific nitrate uptake, particularly at high ambient nitrate concentrations. Grazed seaweed assemblages exhibited reduced nitrate uptake, but only at low nitrate concentrations. We evaluated the effect of seaweed richness on nitrate uptake, both alone and after accounting for effects of tidal elevation and herbivores. When only richness was considered, we found no effect on uptake. However, when simultaneous effects of richness, tide height, and herbivores on uptake were evaluated, we found that all three had relatively large and comparable effects on nitrate uptake coefficients and that there was a negative relationship between seaweed richness and nitrate uptake. Particularly because effects of richness on uptake were not apparent unless the effects of tide height and herbivory were also considered, these results highlight the importance of considering the effects of environmental context when evaluating the consequences of biodiversity change in more realistic systems.  相似文献   

3.
A hypothesis for progressive nitrogen limitation (PNL) proposes that net primary production (NPP) will decline through time in ecosystems subjected to a step-function increase in atmospheric CO2. The primary mechanism driving this response is a rapid rate of N immobilization by plants and microbes under elevated CO2 that depletes soils of N, causing slower rates of N mineralization. Under this hypothesis, there is little long-term stimulation of NPP by elevated CO2 in the absence of exogenous inputs of N. We tested this hypothesis using data on the pools and fluxes of C and N in tree biomass, microbes, and soils from 1997 through 2002 collected at the Duke Forest free-air CO2 enrichment (FACE) experiment. Elevated CO2 stimulated NPP by 18-24% during the first six years of this experiment. Consistent with the hypothesis for PNL, significantly more N was immobilized in tree biomass and in the O horizon under elevated CO2. In contrast to the PNL hypothesis, microbial-N immobilization did not increase under elevated CO2, and although the rate of net N mineralization declined through time, the decline was not significantly more rapid under elevated CO2. Ecosystem C-to-N ratios widened more rapidly under elevated CO2 than ambient CO2 indicating a more rapid rate of C fixation per unit of N, a processes that could delay PNL in this ecosystem. Mass balance calculations demonstrated a large accrual of ecosystem N capital. Is PNL occurring in this ecosystem and will NPP decline to levels under ambient CO2? The answer depends on the relative strength of tree biomass and O-horizon N immobilization vs. widening C-to-N ratios and ecosystem-N accrual as processes that drive and delay PNL, respectively. Only direct observations through time will definitively answer this question.  相似文献   

4.
大气CO2体积分数升高对植物N素吸收的影响   总被引:3,自引:0,他引:3  
庞静  朱建国  谢祖彬 《生态环境》2005,14(3):429-433
从影响植物N素吸收的因素来看,大气CO2体积分数升高条件下植物净光合作用增强,碳同化产物增多,利于改善N素吸收的能量和物质基础:植物根系生长增强,生物量增多且空间分布加大,有利于N素吸收;但土壤有效N供应能力的变化存在增强和减弱两种观点。从植物N素吸收的实际情况来看,大气CO2体积分数升高条件下植物N吸收总量并末增加,植物体内N质量分数普遍降低,某些种类植物N吸收形态也发生了改变。因此要阐明大气CO2体积分数升高对植物N素吸收的影响机制,必须探明土壤有效N供应能力的变化:CO2体积分数升高条件下N矿化作用是否增强,微生物和植物间是否存在对有效N的竞争,此外,CO2体积分数升高条件下植物根系形态特征变化和N素吸收(包括主动和被动吸收)的生理机制及其与环境因素的关系也值得进一步研究。  相似文献   

5.
The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest succession. We examined how CO2 enrichment (+200 microL CO2/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the Duke Forest free-air CO2 enrichment (FACE) experiment in North Carolina, USA. We planted 2352 seedlings of 14 species in the low light forest understory and determined effects of elevated CO2 on individual plant growth, survival, and total sample biomass accumulation, an integrator of plant growth and survivorship over time, for six years. We used a hierarchical Bayes framework to accommodate the uncertainty associated with the availability of light and the variability in growth among individual plants. We found that most species did not exhibit strong responses to CO2. Ulmus alata (+21%), Quercus alba (+9.5%), and nitrogen-fixing Robinia pseudoacacia (+230%) exhibited greater mean annual relative growth rates under elevated CO2 than under ambient conditions. The effects of CO2 were small relative to variability within populations; however, some species grew better under low light conditions when exposed to elevated CO2 than they did under ambient conditions. These species include shade-intolerant Liriodendron tulipifera and Liquidambar styraciflua, intermediate-tolerant Quercus velutina, and shade-tolerant Acer barbatum, A. rubrum, Prunus serotina, Ulmus alata, and Cercis canadensis. Contrary to our expectation, shade-intolerant trees did not survive better with CO2 enrichment, and population-scale responses to CO2 were influenced by survival probabilities in low light. CO2 enrichment did not increase rates of sample biomass accumulation for most species, but it did stimulate biomass growth of shade-tolerant taxa, particularly Acer barbatum and Ulmus alata. Our data suggest a small CO2 fertilization effect on tree productivity, and the possibility of reduced carbon accumulation rates relative to today's forests due to changes in species composition.  相似文献   

6.
Johnson DW 《Ecology》2006,87(1):64-75
Field studies have shown that elevated CO2 can cause increased forest growth over the short term (<6 years) even in the face of N limitation. This is facilitated to some degree by greater biomass production per unit N uptake (lower tissue N concentrations), but more often than not, N uptake is increased with elevated CO2 as well. Some studies also show that N sequestration in the forest floor is increased with elevated CO2. These findings raise the questions of where the "extra" N comes from and how long such growth increases can continue without being truncated by progressive N limitation (PNL). This paper reviews some of the early nutrient cycling literature that describes PNL during forest stand development and attempts to use this information, along with recent developments in soil N research, to put the issue of PNL with elevated CO2 into perspective. Some of the early studies indicated that trees can effectively "mine" N from soils over the long term, and more recent developments in soil N cycling research suggest mechanisms by which this might have occurred. However, both the early nutrient cycling literature and more recent simulation modeling suggest that PNL will at some point truncate the observed increases in growth and nutrient uptake with elevated CO2, unless external inputs of N are increased by either N fixation or atmospheric deposition.  相似文献   

7.
Biogeochemistry of a temperate forest nitrogen gradient   总被引:2,自引:0,他引:2  
Perakis SS  Sinkhorn ER 《Ecology》2011,92(7):1481-1491
Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant-soil-microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (U.S.A.). Surface mineral soil N (0-10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N.ha(-1) x yr(-1). Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for <20% of net N mineralization at low-N sites, increasing to 85-100% of net N mineralization at intermediate- and high-N sites. The ratio of net: gross N mineralization and nitrification increased along the gradient, indicating progressive saturation of microbial N demands at high soil N. Aboveground N uptake by plants increased asymptotically with net N mineralization to a peak of approximately 35 kg N.ha(-1) x yr(-1). Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.  相似文献   

8.
Clark CM  Tilman D 《Ecology》2010,91(12):3620-3630
Plant species richness has declined and composition shifted in response to elevated atmospheric deposition of biologically active nitrogen over much of the industrialized world. Litter thickness, litter nitrogen (N) content, and soil N mineralization rates often remain elevated long after inputs cease, clouding the prospects that plant community diversity and composition would recover should N inputs be reduced. Here we determined how N cycling, litter accumulation, and recruitment limitation influenced community recovery following cessation of long-term N inputs to prairie-like grasslands. We alleviated each of these potential inhibitors through a two-year full-factorial experiment involving organic carbon addition, litter removal, and seed addition. Seed addition had the largest effect on increasing seedling and species numbers and may be necessary to overcome long-term burial of seeds of target perennial grassland species. Litter removal increased light availability and bare sites for colonization, though it had little effect on reducing the biomass of competing neighbors or altering extractable soil N. Nonetheless, these positive influences were enough to lead to small increases in species richness within one year. We found that, although C addition quickly altered many factors assumed favorable for the target community (decreased N availability and biomass of nearby competitors, increased light and site availability), these changes were insufficient to positively impact species richness or seedling numbers over the experimental duration. However, only carbon addition had species-specific effects on the existing plant community, suggesting that its apparent limited utility may be more a result of slow recovery under ambient recruitment rather than from a lack of a restorative effect. There were dramatic interactions among treatments, with the positive effects of litter removal largely negated by carbon addition, and the positive effects of seed addition generally amplified by litter removal. It remains unclear whether each mechanism explored here will induce community recovery, but over different temporal scales. Long-term monitoring will help resolve these remaining questions. Regardless, our results suggest that reversal of species loss and compositional shifts from N deposition in prairies may be more inhibited by habitat fragmentation, recruitment limitation, and long-term suppression of fire than from continued effects of elevated N.  相似文献   

9.
在中国东南部的全尺度复合垂直流人工湿地中开展2年的植物多样性实验,以研究植物多样性(包括植物物种丰富度和植物组成)对群落生产力与多样性效应(即互补效应、选择效应和净多样性效应)的影响及其产生机制。结果表明,2007年物种丰富度与群落生产力呈线形正相关,而2008年显著的单峰格局,其关系式为:y=-0.213x2+3.455x+15.192(R=0.215)。2008年物种丰富度与互补效应呈显著地线形负相关,而2007年呈单峰格局,其关系式为:y=-0.389x2+6.974x-10.707(R=0.247),而且2007年与2008年的互补效应与生产力都呈显著的正相关,表明互补效应对生产力的提高有重要作用。然而,2007年与2008年物种丰富度与选择效应之间均没有显著相关性,且选择效应与群落生产力之间也没有显著相关性,表明选择效应对生产力的提高作用不显著。2007年与2008年中物种组成对生产力、互补效应、选择效应与净多样性效应均有显著影响,说明人工湿地的植物配置对其生态系统功能的维持尤为重要。2008年物种丰富度与净多样性效应呈极显著地线形负相关,而2007年呈显著单峰格局,其关系式为:y=-0.329 x2+5.968 x-12.659(R=0.234),这种趋势主要是由于植物多样性-生态系统功能关系的影响因素(如物种的竞争力和生态位)在2年中有所变化。同时,2007年与2008年的多样性净效应与生产力都呈显著正相关关系,表明生产力与多样性净效应的变化趋势是同步的。与抽样效应假说不同的是,本实验中单种最高产物种(芦竹)在混种时没有表现出高产,主要是由于生长的分配、资源的竞争力与环境的变化等。  相似文献   

10.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

11.
Luo Y  Hui D  Zhang D 《Ecology》2006,87(1):53-63
The capability of terrestrial ecosystems to sequester carbon (C) plays a critical role in regulating future climatic change yet depends on nitrogen (N) availability. To predict long-term ecosystem C storage, it is essential to examine whether soil N becomes progressively limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. A critical parameter to indicate the long-term progressive N limitation (PNL) is net change in ecosystem N content in association with C accumulation in plant and soil pools under elevated CO2. We compiled data from 104 published papers that study C and N dynamics at ambient and elevated CO2. The compiled database contains C contents, N contents, and C:N ratio in various plant and soil pools, and root:shoot ratio. Averaged C and N pool sizes in plant and soil all significantly increase at elevated CO2 in comparison to those at ambient CO2, ranging from a 5% increase in shoot N content to a 32% increase in root C content. The C and N contents in litter pools are consistently higher in elevated than ambient CO2 among all the surveyed studies whereas C and N contents in the other pools increase in some studies and decrease in other studies. The high variability in CO2-induced changes in C and N pool sizes results from diverse responses of various C and N processes to elevated CO2. Averaged C:N ratios are higher by 3% in litter and soil pools and 11% in root and shoot pools at elevated relative to ambient CO2. Elevated CO2 slightly increases root:shoot ratio. The net N accumulation in plant and soil pools at least helps prevent complete down-regulation of, and likely supports, long-term CO2 stimulation of C sequestration. The concomitant C and N accumulations in response to rising atmospheric CO2 may reflect intrinsic nature of ecosystem development as revealed before by studies of succession over hundreds to millions of years.  相似文献   

12.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity.  相似文献   

13.
Calcium constrains plant control over forest ecosystem nitrogen cycling   总被引:1,自引:0,他引:1  
Groffman PM  Fisk MC 《Ecology》2011,92(11):2035-2042
Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.  相似文献   

14.
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.  相似文献   

15.
Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.  相似文献   

16.
植物地上部分对大气CO2浓度升高的响应   总被引:8,自引:2,他引:8  
大气CO2浓度升高对植物的影响,主要是促进了植物生长早期的光合作用,同时也增加了对其他资源的需求;植物的光合作用也存在对高CO2浓度的适应,不会一直维持较高的光合水平,而且植物的呼吸作用也可能会增加;大气CO2浓度升高和其他环境条件,如水分,温度和光照等对植物生长和产量存在相互作用,可以部分弥补条件的不足,也影响作物和杂草的竞争关系;自然植物群落由于有很高的多样性和复杂性,对其研究应该在生物群落水平上进行,用外推法回到植物水平,而不是相反,而且自然物种间的竞争是激烈的,CO2浓度升高或其他因素带来的任何改善,都会明显地改变竞争平衡。  相似文献   

17.
Theimer TC  Gehring CA  Green PT  Connell JH 《Ecology》2011,92(8):1637-1647
Although birds and mammals play important roles in several mechanisms hypothesized to maintain plant diversity in species-rich habitats, there have been few long-term, community-level tests of their importance. We excluded terrestrial birds and mammals from fourteen 6 x 7.5 m plots in Australian primary tropical rain forest and compared recruitment and survival of tree seedlings annually over the subsequent seven years to that on nearby open plots. We re-censused a subset of the plots after 13 years of vertebrate exclusion to test for longer-term effects. After two years of exclusion, seedling abundance was significantly higher (74%) on exclosure plots and remained so at each subsequent census. Richness was significantly higher on exclosure plots from 1998 to 2003, but in 2009 richness no longer differed, and rarefied species richness was higher in the presence of vertebrates. Shannon's diversity and Pielou's evenness did not differ in any year. Vertebrates marginally increased density-dependent mortality and recruitment limitation, but neither effect was great enough to increase richness or diversity on open plots relative to exclosure plots. Terrestrial vertebrates significantly altered seedling community composition, having particularly strong impacts on members of the Lauraceae. Overall, our results highlight that interactions between terrestrial vertebrates and tropical tree recruitment may not translate into strong community-level effects on diversity, especially over the short-term, despite significant impacts on individual species that result in altered species composition.  相似文献   

18.
全球变化对土壤有机碳(SOC)存贮与分解的影响在全球碳(C)循环中具有重要地位.分别通过室内土壤培养法和氯仿熏蒸法,研究了降水变化和氮(N)添加处理对鼎湖山3种不同演替阶段的季风常绿阔叶林、针阔混交林和马尾松针叶林SOC矿化和土壤微生物量碳(SMBC)的影响.结果表明:1)降水量增加能够提高森林演替晚期SOC累积矿化量和矿化速率,而对森林演替早期SOC累积矿化量和矿化速率没有显著影响(P>0.05).2)干旱条件(降水量减少)降低森林SMBC含量,且在鼎湖山季风林表层土壤(0~10 cm)中SMBC的减少达到显著水平(P<0.05).3)N添加处理对鼎湖山3种森林类型SOC累积矿化量、矿化速率以及SMBC都没有显著影响(P>0.05).未来关于SOC矿化对全球变化响应的研究,要综合考虑土壤有机质质量、C/N比例、外源性氮输入等因素的作用.图4表2参37  相似文献   

19.
Nitrogen (N) deposition from agriculture and combustion of fossil fuels is a major threat to plant diversity, but its effects on organisms at higher trophic levels are unclear. We investigated how N deposition may affect species richness and abundance (number of individuals per species) in butterflies. We reviewed the peer-reviewed literature on variables used to explain spatial variation in butterfly species richness and found that vegetation variables appeared to be as important as climate and habitat variables in explaining butterfly species richness. It thus seemed likely that increased N deposition could indirectly affect butterfly communities via its influence on plant communities. To test this prediction, we analyzed data from the Swiss biodiversity monitoring program for vascular plants and butterflies in 383 study sites of 1 km2 that are evenly distributed throughout Switzerland. The area has a modeled N deposition gradient of 2–44 kg N ha−1 year−1. We used traditional linear models and structural equation models to infer the drivers of the spatial variation in butterfly species richness across Switzerland. High N deposition was consistently linked to low butterfly diversity, suggesting a net loss of butterfly diversity through increased N deposition. We hypothesize that at low elevations, N deposition may contribute to a reduction in butterfly species richness via microclimatic cooling due to increased plant biomass. At higher elevations, negative effects of N deposition on butterfly species richness may also be mediated by reduced plant species richness. In most butterfly species, abundance was negatively related to N deposition, but the strongest negative effects were found for species of conservation concern. We conclude that in addition to factors such as intensified agriculture, habitat fragmentation, and climate change, N deposition is likely to play a key role in negatively affecting butterfly diversity and abundance.  相似文献   

20.
Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting and replanting or by the phenological traits of the species selected or combined, subject N supplies to leaching loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号