首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
林瑛  宋磊  胡源 《火灾科学》2016,25(3):165-172
以三氯氧磷、苯酚和丙烯酸羟乙酯为原料合成了含磷阻燃单体(DPHE),并作为反应型阻燃剂通过自由基共聚,将其引入不饱和聚酯树脂中,同时添加多壁碳纳米管(MWCNTs),制备不同组分的不饱和聚酯复合材料。采用极限氧指数、UL-94垂直燃烧法表征材料的燃烧性能并评定燃烧等级;通过锥形量热测试数据对材料燃烧过程中的热释放进行研究,结果显示,阻燃不饱和聚酯具有更低的热释放速率峰值(PHRR)和总热释放量(THR)。此外,采用热重分析(TGA)和扫描电子显微镜(SEM)分别对材料的热降解性能和炭渣形貌进行研究,阐明了含磷阻燃单体和多壁碳纳米管的阻燃机理。  相似文献   

2.
为提高硅橡胶泡沫(SiFs)的阻燃性能,采用溶剂法制备钴基金属有机框架材料(Co-MOFs)并用X射线光电子能谱仪(XPS)对其结构进行表征。将制备的材料添加到SiFs中,利用极限氧指数(LOI)、UL-94试验和锥形量热仪(CONE)对SiFs的阻燃性能和抑烟性能进行研究。结果表明:添加1%及以上Co-MOFs时,SiFs阻燃等级达到UL-94-V0级;添加3%Co-MOFs时,SiFs的LOI达30.2%,热释放速率峰值(PHRR)和总热释放量(THR)相比原样分别降低了56.92%和66.73%;添加1%Co-MOFs的SiFs的产烟率峰值(PSPR)和产烟量(TSR)比原样分别降低了82%和85%,Co-MOFs提高了SiFs的阻燃和抑烟性能。  相似文献   

3.
DOPO(9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物)、多聚甲醛、二乙醇胺为原料合成了含二羟基的DOPO衍生物DHDOPO,并作为反应型阻燃剂引入到环氧树脂分子链结构中,制备出一组不同含磷量的阻燃环氧树脂复合材料。采用极限氧指数(LOI)法和垂直燃烧(UL-94)法测试材料的燃烧性能,结果表明,在含磷量为1.5%时,氧指数达到35.0%,并达到V-0级别。锥形量热计(Cone)数据显示阻燃改性后的环氧树脂具有更低的热释放速率峰值(PHRR)和总热释放量(THR),说明具有更高的火灾安全性。此外,还通过热重分析(TGA)实验研究了DHDOPO对环氧树脂热稳定性能的影响。通过扫描电镜对燃烧过后的炭渣形貌进行分析,推测了燃烧的过程和阻燃的机理。  相似文献   

4.
张波  曾文茹 《火灾科学》2014,23(4):233-237
合成并表征了石墨烯,然后通过溶剂法制备石墨烯/环氧树脂复合材料,研究了石墨烯对环氧树脂复合材料的热稳定性和燃烧性能的影响。热重分析数据显示,石墨烯可以显著提高环氧树脂的热稳定性。锥形量热仪测试结果表明,石墨烯降低了环氧复合材料热和烟气的释放。炭渣的扫描电镜(SEM)图揭示了石墨烯减少了环氧树脂炭层孔洞的生成,提高了炭层的致密度,从而增强了炭层的阻隔作用。  相似文献   

5.
王云  王正洲  胡源 《火灾科学》2008,17(2):88-92
采用氧指数法(LOI)、垂直燃烧法(UL-94)、锥形量热计试验(CCT)、热重分析(TGA)及激光拉曼光谱(LRS)对三聚氰胺磷酸盐(MP)及季戊四醇(PER)阻燃环氧树脂的阻燃性、热稳定性及燃烧后的炭层结构进行了研究。结果表明,MP阻燃环氧树脂体系中,LOI值随MP的含量的增加而增加;在MP添加量达到30%后,LOI值为34.5,此时阻燃环氧树脂达UL-94V-0级。当MP阻燃环氧树脂体系中引入PER时,对环氧树脂的阻燃性略有改善。在总添加量一定时,LOI值随PER的含量增加先增加后减小。TG结果表明,MP和PER降低了环氧树脂阻燃材料的初始分解温度,但在高温下(〉400℃)阻燃环氧树脂的热稳定性较好。  相似文献   

6.
为提高低密度聚乙烯(LDPE)阻燃性能和阻燃LDPE复合材料的力学性能与抑烟性能,采用原位聚合法制备三聚氰胺-甲醛(MF)树脂包覆二乙基次磷酸铝(ADP)的MF@ADP微胶囊,再引入三聚氰胺聚磷酸(MPP)与MF@ADP进行协效复配,熔融共混制备阻燃LDPE复合材料。通过氧指数、热重分析、力学测试和烟密度测试等研究复合材料的阻燃、力学和抑烟性能。研究结果表明:MF@ADP微胶囊能改善阻燃剂与复合材料之间的相容性,与MPP复配构成的磷-氮膨胀阻燃体系能有效提高LDPE的抑烟性能;当MF@ADP∶MPP的质量比为2∶1时,材料的LOI达到了30.6%,垂直燃烧测试达到UL-94 V0级,拉伸强度为11.8 MPa,且形成的P/N/O高聚物炭层稳定性更高,可减少LDPE燃烧释放的烟雾量。  相似文献   

7.
为进一步提高膨胀型阻燃剂(IFR)对聚甲醛(POM)的阻燃效果,首先将硼酸锌(ZB)与常用IFR(聚磷酸铵-三聚氰胺-季戊四醇)共混制得ZB-IFR复配膨胀阻燃体系的样品,采用熔融共混法制备ZB-IFR/POM复合阻燃材料;然后利用极限氧指数(LOI)测定仪、垂直燃烧(UL-94)测试法、热重分析(TGA)法、扫描电镜(SEM)、锥形量热仪(CONE)及热重-红外(TG-IR)仪等研究ZBIFR对POM的协效阻燃作用。结果表明:当ZB含量为1%时,所得1.0ZB-IFR/POM的LOI可达55%,UL-94等级为V-0级;其受热膨胀后所得残炭量高,炭层结构致密稳定,且在燃烧过程中的热释放速率(HRR)、质量损失及烟气释放量均最小,火灾性能指数(FPI)相对最高;除此,不含ZB的IFR/POM在受热分解过程中比1.0ZB-IFR/POM放出更多的CO2,说明ZB的加入能有效地抑制复合阻燃材料的充分燃烧,显示出良好的协效阻燃作用。  相似文献   

8.
将高抗冲聚苯乙烯树脂颗粒(纳米/微米级)、十溴二苯乙烷颗粒、三氧化二锑、弹性体、分散剂和偶联剂通过一步熔融共混工艺先行制备UL94 V-0级阻燃母粒,再将其与HIPS本体树脂按不同比例混合制得阻燃复合材料,并利用极限氧指数(LOI)、垂直燃烧(UL94)及ISO 5660锥形量热计三项测试表征制得样品的燃烧和火灾性能,从中提炼和分析LOI、垂直燃烧等级和最大热释放速率(Pk HRR)等三元关键指标相关性,给出了定性定量相结合的潜在火灾危险性分级范围。结果表明:UL94燃烧等级和Pk HRR相关性体现为当Pk HRR≤330.0 k W/m~2时,试样UL94等级均为V-0级;UL94燃烧等级和LOI相关性体现为随UL94燃烧等级从V-0降到HB时,试样LOI从27.0降到17.0;Pk HRR与LOI相关性体现为Pk HRR与LOI呈粗略反向线性相关性;UL94燃烧等级、Pk HRR和LOI三元相关性体现为当LOI22.0、Pk HRR为399.0~665.0 k W/m~2时,材料UL94燃烧等级介于HB~V-2。  相似文献   

9.
为提高聚丙烯(PP)的阻燃性能,采用溶胶凝胶法制备膨胀阻燃剂炭源——硅改性木质素(SiO2@AL),与聚磷酸铵(APP)、双季戊四醇(DPER)经熔融共混制备膨胀阻燃PP复合材料。通过氧指数、垂直燃烧、热重分析、烟密度测试等考查复合材料的阻燃、热稳定性、抑烟等性能。结果表明:当添加4%SiO2@AL的PP复合材料UL-94测定达到V-0;而SiO2@AL与DPER的质量比为1∶3时,氧指数最高为27.6%。SiO2@AL/IFR/PP具有良好的高温稳定性能,较传统膨胀阻燃PP的热失重速率降低了1.75%,800℃时残留量增加了0.5倍;烟密度测试和残炭SEM分析表明,SiO2@AL的添加使PP形成了更加稳定的蜂窝状炭层,烟气释放总量呈下降趋势。  相似文献   

10.
为了探究三嗪和磷腈类碳源对聚乳酸阻燃性能及力学性能的影响,提高阻燃效率,利用苯氧基聚磷腈(SPB100)、三嗪类膨胀阻燃剂(FP2200)作碳源分别与聚磷酸铵(APP)按不同配比复配,采用熔融共混法制备了阻燃聚乳酸复合材料,总添加量保持10%.通过热重分析(TGA)、极限氧指数(LOI)、垂直燃烧(UL-94)和锥形量热法分析了2种膨胀阻燃体系对阻燃聚乳酸热稳定性和阻燃性能的影响,采用拉伸试验评价了阻燃聚乳酸的机械性能,并采用扫描电子显微镜和傅立叶变换红外光谱研究了阻燃聚乳酸残炭的化学结构和组成,并分析了阻燃机理.结果表明,当SPB100/APP的质量比为7/3时,LOI达到28.5%且达到UL-94 V-0等级,拉伸强度为49.7 MPa.研究表明,两种碳源均可改善阻燃聚乳酸的热稳定性、抗滴落性能和阻燃性,能满足阻燃要求,其中添加SPB100的阻燃聚乳酸复合材料的力学性能更优.  相似文献   

11.
研究主要采用离子交换、溶液浸渍、球磨等方法制备负载镍有机蒙脱土体系,并采用熔融插层法制备PLS纳米复合材料,用锥形量热仪等试验仪器对材料的燃烧性能进行测试与评价。研究结果表明:采用离子交换法制备的负载镍有机蒙脱土体系能较好的降低复合材料的热释放速率,其阻燃作用比有机蒙脱土略好。通过对HIPS/负载镍有机蒙脱土复合材料燃烧后炭层的形貌及质量损失的分析与研究,推断其阻燃机理为镍催化HIPS在燃烧过程生成的炭与有机蒙脱土的插层结构共同起到了物理屏蔽阻燃作用。  相似文献   

12.
将工业上广泛应用的光固化树脂EA作为基体,通过分子设计,利用甲苯二异氰酸酯TDI的双异氰酸酯结构将合成的磷酸酯阻燃剂ODOPM链接到其分子主链上,制备出一组改性的光固化丙烯酸酯预聚物。利用FT-IR,1 H-NMR,31P-NMR对分子结构进行表征;极限氧指数(LOI)和微型量热仪(MCC)的结果表明材料的阻燃性能明显提高,改性后树脂的热释放速率峰值PHRR相对于EA降低了近66%,总热释放量也明显降低;扫描电镜结果显示改性后的树脂固化膜形成的炭层变得更平滑和致密,并且完整无破裂现象;同时对固化膜的热稳定性和热降解过程进行了探讨。分析论证了ODOPM改性修饰后的EA有更高的阻燃性,成炭能力明显增强,形成的致密炭层有效地阻止了热交换,使材料在高温下更稳定。  相似文献   

13.
新型膨胀型阻燃剂的合成及其在聚丙烯(PP)中的应用   总被引:1,自引:0,他引:1  
以氨基三甲叉磷酸(ATMP)、尿素为原料采用热缩合法合成新型膨胀型阻燃剂一ATU。用傅里叶红外光谱及元素分析表征ATU的结构及组成。将ATU与常见碳源季戊四醇进行复配,应用于PP材料的阻燃。研究发现ATU集气源酸源于一身,对于PP阻燃效果明显,甚至好于同比例的APP。极限氧指数仪和垂直燃烧仪测试材料燃烧等级;微型燃烧量热仪(MCC)研究了材料燃烧过程中热释放情况;热重分析(TGA)和扫描电镜(SEM)分别从材料的热降解及成炭原理方面上对ATU的阻燃机理进行了研究。  相似文献   

14.
利用极限氧指数、垂直燃烧试验、酒精喷灯燃烧试验、锥形量热仪、热重分析和力学性能测试等手段研究了溴-锑-磷阻燃体系对聚丙烯(PP)土工格栅的力学性能、燃烧性能、生烟性能和热解特性的影响。结果表明,低添加量(质量分数≤5%)的溴-锑-磷阻燃体系对PP土工格栅的拉伸强度和断裂伸长率影响较小,但明显提高了材料的阻燃性能,其中质量分数5%的四溴双酚A-双(2,3-二溴丙基醚)(八溴醚)-三氧化二锑阻燃PP的峰值热释放速率(HRR)和总释放热(THR)相比于纯PP分别下降了39.98%和26.03%。八溴醚-三氧化二锑阻燃体系与红磷复配时还表现出较好的协效作用,当溴-锑与磷的质量比为3∶2时,协效阻燃效果最优,仅添加5%的协效阻燃体系便可使PP的LOI和UL 94等级分别达到27.9%和V-0级,并通过酒精喷灯燃烧试验。与纯PP相比,溴-锑阻燃体系虽降低了PP的HRR和THR,但增大了燃烧过程中的生烟速率(SPR)和总产烟量(TSR),而红磷的加入能有效降低溴-锑阻燃PP的生烟量。热重分析表明,溴-锑-磷协效阻燃体系表现出较好的气相阻燃作用,能有效降低PP的热裂解速率,增强了PP的阻燃性能。  相似文献   

15.
Thermal protection of chemical storage tanks is very important when a fire accident occurs. Intumescent coating on the surface of the tank is one of efficient measures to prevent fire. It is essential to investigate the interaction between heat transfer and burning behavior of intumescent coating, which will affect the fire-proof performance of the coating. In this paper, ADP/MPP epoxy intumescent coatings were prepared by adding the intumescent flame retardants aluminum diethylphosphinate (ADP) and melamine phenyl phosphonate (MPP) into epoxy resin (EP). The heat transfer process and burning behavior were analyzed by temperature distribution, thermogravimetric analysis (TGA), cone calorimeter and scanning electron microscopy (SEM). The results showed that the ratio of ADP and MPP, the intumescent characteristics and the structure of the char layer can affect the heat transfer of the coating remarkably. The residual char morphology analysis shows that the coating containing ADP and MPP is more capable of forming a well-structured char layer structure and shows a good thermal insulation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号