首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Pseudevernia furfuracea (L.) Zopf biosorption efficiency for zinc(II) was determined. The biosorption efficiency of Zn(II) onto P. furfuracea was significantly affected by the parameters of pH, biomass concentration, stirring speed, contact time, and temperature. The maximum biosorption efficiency of P. furfuracea was 92% at 10 mg/L Zn(II), for 5 g/L lichen biomass dosage. The biosorption of Zn(II) ions onto biomass was better described by the Langmuir model and the pseudo-second-order kinetic. The obtained thermodynamic parameters from biosorption of Zn(II) ions onto biomass were feasible, exothermic, and spontaneous. The different desorbents were used to perform the desorption studies for Zn(II)-loaded biomass. Fourier transform infrared (FTIR) spectroscopy was used to determine the participating functional groups of P. furfuracea biomass in Zn (II) biosorption. The broad and strong bands at 3292–3304 cm?1 were due to bound hydroxyl (–OH) or amine (–NH) groups. The effective desorptions were obtained up to 96% with HNO3. P. furfuracea is an encouraging biosorbent for Zn(II) ions, with high metal biosorption and desorption capacities, availability, and low cost. It was believed that by using this new method in which biomass is used as a sorbent, the toxic pollutants could be selectively removed from aqueous solutions to desired low levels. The remarkable properties of lichens in the transformation and detoxification of organic and inorganic pollutants are well known, and many processes have received attention in the general area of environmental biotechnology and microbiology.
Implications:The remarkable properties of lichens in the biosorption capacity of organic and inorganic pollutants are well known, and many processes have received attention in the general area of environmental biotechnology and microbiology.  相似文献   

2.

Purpose

This research is on the evaluation of biosorption capability of the core of Artocarpus odoratissimus (Tarap), grown in Brunei Darussalam, towards Cd(II) and Cu(II) ions present in synthetic solutions, and to characterize the surface of Tarap particles.

Methods

Thermogravimetric analysis and surface titrations were conducted to characterize the surface of dried Tarap core particles. Atomic absorption spectroscopic measurements were conducted to determine the extent of removal of Cd(II) and Cu(II) under different experimental conditions.

Results

Mass reductions associated with many exothermic reaction peaks were observed beyond 200°C up to 650°C indicating the combustion of organic matter in Tarap. Dried particles of core of Tarap bear a negative surface charge promoting strong interaction towards positively charged ions, such as Cu(II) and Cd(II). Biosorption of the two metal ions on Tarap, which is relatively high beyond pH?=?4, occurs within a short period of exposure time. The extent of biosorption is enhanced by acid treatment of the biosorbent, and further it does not significantly depend on the presence of nonreacting ions up to an ionic strength of 2.0?M.

Conclusion

Strong attraction between each metal ion and the biosorbent is attributed to the negative surface charge on the biosorbent within a broad pH range. Acid treatment of the biosorbent improves sorption characteristics, suggesting that ion exchange plays an important role in the metal ion??biosorbent interaction process.  相似文献   

3.
There is limited knowledge available on metalloid biosorption by freshwater algae. In this study, biosorption properties of anionic Sb(OH) 6 ? by naturally occurring cyanobacteria Microcystis were investigated as a function of initial pH, biosorbent dosage, contact time, and addition sequences of competitive ions, and their binding mechanisms were discussed. The biosorption process was fast and equilibrium was reached at 2 h. Sb(V) biosorption decreased with the increase of pH and the optimum pH range was 2.5–3.0, which corresponded with the changes of surface charges of the cell wall of Microcystis. The biosorption data satisfactorily followed the Freundlich model. The simultaneous addition of H2PO4 ? and Ca2+ enhanced Sb(V) biosorption, while NO3 ? greatly inhibited the biosorption, compared with single Sb(V) addition. The initial addition of the competitive ions reduced Sb(V) biosorption at higher Sb(V) concentrations, compared with simultaneous addition. A fraction of biosorbed Sb(V) was replaced by the competitive ions which were added subsequently, and the exchange only occurred at higher concentrations of Sb(V). 1.0 mol/L HCl demonstrated the highest desorption efficiency. Speciation analyses indicated that no reduction of Sb(V) into Sb(III) occurred. Based on the results of zeta potential and attenuated total reflection infrared spectroscopy spectra, Sb(OH) 6 ? bound to the biomass through electrostatic attraction and surface complexation, and amino, carboxyl, and hydroxyl groups were involved in the biosorption process. The study suggest that Microcystis from cyanobacteria blooms could be used as a potential biosorbent to remove Sb(V) from effluents at environmentally relevant concentrations (≤10.0 mg/L).  相似文献   

4.

Purpose

The potential of using waste Saccharomyces cerevisiae as adsorbent for the adsorption of As(III) from aqueous solution was assessed.

Methods

The biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy analysis. Various parameters including pH, biosorbent dosage, contact time, and temperature were systematically investigated.

Results and conclusions

The FTIR results of S. cerevisiae biomass showed that biomass has different functional groups, and these functional groups are able to react with metal ion in aqueous solution. Several biosorption isotherms were used to fit the equilibrium data, showing sorption to be monolayer on the heterogeneous surface of the biosorbent. The maximum biosorption capacity calculated using Langmuir model was found to be 62.908???g/g at pH?5.0, biosorbent dosage 5?g/L, contact time 240?min, and temperature 35?°C. The kinetic studies indicated that the biosorption process of the As(III) followed well the pseudo-second-order equation. The intraparticle diffusion and Richenberg models were applied to the data, and we found that the biosorption of As(III) was governed by film diffusion followed by intraparticle diffusion. The thermodynamics constants indicated that the biosorption of As(III) onto S. cerevisiae was spontaneous and endothermic under examined conditions. Biosorbent could be regenerated using 0.5?M NaOH solution, with up to 75?% recovery.  相似文献   

5.
棘孢曲霉(Aspergillus aculeatus)对Pb2+和Cd2+的吸附特征   总被引:3,自引:2,他引:1  
为了研究棘孢曲霉(Aspergillus aculeatus)对溶液中Pb2+和Cd2+吸附过程的特征,分别从动力学、热力学和吸附等温线三方面进行了实验,同时还研究了pH、温度、时间、重金属离子起始浓度和吸附剂用量对吸附过程的影响。等温吸附过程可以用Langmuir方程来描述。在实验设定条件下,棘孢曲霉对Pb2+和Cd2+最大吸附量分别为71.2 mg/g和59.8 mg/g;动力学实验数据很好的符合二级  相似文献   

6.
Iqbal M  Edyvean RG 《Chemosphere》2005,61(4):510-518
The potential of loofa sponge discs to immobilize fungal biomass of Phanerochaete chrysosporium (a known biosorbent) was investigated as a low cost biosorbent for the removal of Cd(II) ions from aqueous solution. A comparison of the biosorption of Cd(II) by immobilized and free fungal biomass from 10 to 500 mg l(-1) aqueous solutions showed an increase in uptake of over 19% when the biomass is immobilized (maximum biosorption capacity of 89 and 74 mg Cd(II) g(-1) biomass for immobilized and free biomass respectively at a solution pH of 6). Equilibrium was established within 1h and biosorption was well defined by the Langmuir isotherm model. The immobilized biomass could be regenerated using 50 mM HCl, with up to 99% metal recovery and reused in ten biosorption-desorption cycles without significant loss of capacity. This study suggests that such an immobilized biosorbent system has the potential to be used in the industrial removal/recovery of cadmium and other pollutant metal ions from aqueous solution.  相似文献   

7.
Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mg g−1 and for Cu(II) 6.15 and 17.8 mg g−1 dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmol g−1 for Ni(II) and 0.162 mmol g−1 for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters.  相似文献   

8.
In the present study, the effects of biosorbent Aspergillus niger dosage, initial solution pH and initial Ni(II) concentration on the uptake of Ni(II) by NaOH pretreated biomass of A. niger from aqueous solution were investigated. Batch experiments were carried out in order to model and optimize the biosorption process. The influence of three parameters on the uptake of Ni(II) was described using a response surface methodology (RSM) as well as Langmuir and Freundlich isotherm models. Optimum Ni(II) uptake of 4.82 mg Ni(II) g−1 biomass (70.30%) was achieved at pH 6.25, biomass dosage of 2.98 g L−1 and initial Ni(II) concentration of 30.00 mg L−1 Ni(II). Langmuir and Freundlich were able to describe the biosorption isotherm fairly well. However, prediction of Ni(II) biosorption using Langmuir and Freundlich isotherms was relatively poor in comparison with RSM approaches. The biosorption mechanism was also investigated by using Fourier transfer infrared (FT-IR) analysis of untreated, NaOH pretreated, and Ni(II) loaded A. niger biomass.  相似文献   

9.
The residual algal-bacterial biomass from photosynthetically supported, organic pollutant biodegradation processes, in enclosed photobioreactors, was tested for its ability to accumulate Cu(II), Ni(II), Cd(II), and Zn(II). Salicylate was chosen as a model contaminant. The algal-bacterial biomass combined the high adsorption capacity of microalgae with the low cost of the residual biomass, which makes it an attractive biosorbent for environmental applications. Cu(II) was preferentially taken-up from the medium when the metals were present both separately and in combination. There was no observed competition for adsorption sites, which suggested that Cu(II), Ni(II), Cd(II), and Zn(II) bind to different sites and that active Ni(II), Cd(II) and Zn(II) binding groups were present at very low concentrations. Therefore, special focus was given to Cu(II) biosorption. Cu(II) biosorption by the algal-bacterial biomass was characterized by an initial fast cell surface adsorption followed by a slower metabolically driven uptake. pH, Cu(II), and algal-bacterial concentration significantly affected the biosorption capacity for Cu(II). Maximum Cu(II) adsorption capacities of 8.5+/-0.4 mg g-1 were achieved at an initial Cu(II) concentration of 20 mg l-1 and at pH 5 for the tested algal-bacterial biomass. These are consistent with values reported for other microbial sorbents under similar conditions. The desorption of Cu(II) from saturated biomass was feasible by elution with a 0.0125 M HCl solution. Simultaneous Cu(II) and salicylate removal in a continuous stirred tank photobioreactor was not feasible due to the high toxicity of Cu(II) towards the microbial culture. The introduction of an adsorption column, packed with the algal-bacterial biomass, prior to the photobioreactor reduced Cu(II) concentration, thereby allowing the subsequent salicylate biodegradation in the photobioreactor.  相似文献   

10.
Lead (II) has been as one of the most toxic heavy metals because it is associated with many health hazards. Therefore, people are increasingly interested in discovering new methods for effectively and economically scavenging lead (II) from the aquatic system. Recent studies demonstrate biosorption is a promising technology for the treatment of pollutant streams. To apply these techniques, suitable adsorbents with high efficiency and low cost are demanded. The waste biomass of Bacillus gibsonii S-2 biosorbent was used as low-cost biosorbent to remove metallic cations lead (II) from aqueous solution. To optimize the maximum removal efficiency, the effect of pH and temperature on the adsorption process was studied. The isotherm models, kinetic models and thermodynamic parameters were analysed to describe the adsorptive behaviour of B. gibsonii S-2 biosorbent. The mechanisms of lead (II) biosorption were also analysed by FTIR and EDX. The results showed that the optimum pH values for the biosorption at three different temperatures, i.e. 20, 30 and 40 °C, were determined as 4. The equilibrium data were well fitted to Langmuir model, with the maximum lead (II) uptake capacities of 333.3 mg?g?1. The kinetics for lead (II) biosorption followed the pseudo-second-order kinetic equation. The thermodynamic data showed that the biosorption process were endothermic (?G?<?0), spontaneous (?H?>?0) and irreversible (?S?>?0). The mechanism of lead (II) biosorption by the waste biomass of B. gibsonii S-2 biosorbent could be a combination of ion exchange and complexation with the functional groups present on the biosorbent surface. The application of the waste biomass of B. gibsonii S-2 for lead (II) adsorption, characterized with higher lead (II) sorption capacity and lower cost, may find potential application in industrial wastewater treatment.  相似文献   

11.
The present study attempts to analyze the biosorption trend of biosorbent Caulerpa fastigiata (macroalgae) biomass for removal of toxic heavy metal ion Pb (II) from solution as a function of initial metal ion concentration, pH, temperature, sorbent dosage, and biomass particle size. The sorption data fitted with various isotherm models and Freundlich model was the best one with correlation coefficient of 0.999. Kinetic study results revealed that the sorption data on Pb (II) with correlation coefficient of 0.999 can best be represented by pseudo-second-order. The biosorption capacity (q e ) of Pb (II) is 16.11?±?0.32 mg g?1 on C. fastigiata biomass. Thermodynamic studies showed that the process is exothermic (ΔH° negative). Free energy change (ΔG°) with negative sign reflected the feasibility and spontaneous nature of the process. The SEM studies showed Pb (II) biosorption on selective grains of the biosorbent. The FTIR spectra indicated bands corresponding to –OH, COO?, –CH, C?=?C, C?=?S, and –C–C– groups were involved in the biosorption process. The XRD pattern of the C. fastigiata was found to be mostly amorphous in nature.  相似文献   

12.
The process of biosorption of heavy metal ions (Cr3+, Cd2+, Cu2+) by blue-green algae Spirulina sp. is discussed in this paper. Spirulina sp. was found to be a very efficient biosorbent. The aim of the present study was to investigate quantitatively the potential binding sites present at the surface of Spirulina sp., using both potentiometric titrations and adsorption isotherms. The kinetic experiments showed that the process equilibrium was reached quickly, in less than 5-10 min. It was found that the equilibrium dependence between biosorption capacity and bulk metal ion concentration could be described with Langmuir equation. This suggests that the mechanism of biosorption is rather chemisorption than physical adsorption and was further confirmed by the low surface area associated with physical adsorption and by the presence of cations that appeared in the solution after biosorption. The maximum contribution of physical adsorption in the overall biosorption process was evaluated as 3.7%. It was proposed that functional groups on the cell surface contributed to the binding of metal ions by a biosorbent via equilibrium reaction. Three functional groups capable of cation exchange were identified on the cell surface. The biomass was described as weakly acidic ion exchanger. Since deprotonation of each functional group depends on pH, the process of biosorption is strongly pH-dependent. This was confirmed in the biosorption experiments carried out at different pH. The contribution of functional groups in the biosorption process was confirmed by chemical modification of the groups. Chemically blocked groups did not show neither biosorption nor ion-exchange capabilities. It has been shown that growth conditions can affect the metal adsorption properties of microalgae. The paper also discusses desorption characteristics of the biosorbent. The criteria for desorption were high elution efficiency and preservation of biosorptive properties. Desorbent that possessed these characteristics was nitric acid.  相似文献   

13.

Introduction

A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green.

Materials and methods

For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also.

Result and discussion

Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model.

Conclusions

The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm?1. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.  相似文献   

14.
以氧化节杆菌为吸附剂,处理Cu(NO3)2、CuSO4和CuCl2溶液,研究菌体对Cu2+和NO3-的吸附效果,以及NO 3-、SO42-和Cl-对Cu2+吸附的影响。结果表明氧化节杆菌对Cu2+和NO 3-的吸附具有选择性。Cu2+的吸附效果理想,0.1 g/L菌体在10 min时,对2 mg/L Cu2+的吸附率达...  相似文献   

15.
满江红干体对锌离子的生物吸附   总被引:2,自引:1,他引:1  
以满江红干体为生物吸附剂,研究了不同条件下对废水中Zn2+的净化作用。结果表明,满江红干体对Zn2+的吸附是一个快速的过程,前5 min的吸附量达到最大吸附量的62.9%,30 min达到吸附平衡;初始pH值对Zn2+的吸附有显著的影响,最适pH值为6;随着干体量的增加,吸附率逐渐提高而吸附量则降低;随着Zn2+初始浓度的增加,吸附率逐渐降低而吸附量则提高。满江红干体对Zn2+的吸附符合Langmuir吸附等温线方程,最大吸附容量达57.5 mg/g。5次吸附解吸循环实验数据表明,重复次数和再生处理对满江红干体的吸附能力没有产生显著影响。因此,满江红干体在处理含Zn2+废水中的重复使用是可行的。  相似文献   

16.
17.
In this present study, the biosorption of Cr(VI) and Zn(II) ions from synthetic aqueous solution on defatted J atropha oil cake (DJOC) was investigated. The effect of various process parameters such as the initial pH, adsorbent dosage, initial metal ion concentration and contact time has been studied in batch-stirred experiments. Maximum removal of Cr(VI) and Zn(II) ions in aqueous solution was observed at pH 2.0 and pH. 5.0, respectively. The removal efficiency of Cr(VI) and Zn(II) ions from the aqueous solution was found to be 72.56 and 79.81 %, respectively, for initial metal ion concentration of 500 mg/L at 6 g/L dosage concentration. The biosorbent was characterized by Fourier transform infrared, scanning electron microscopy and zero point charge. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models and the best fit is found to be with the Freundlich isotherm for both Cr(VI) and Zn(II) metal ions. The kinetic data obtained at different metal ion concentration have been analysed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and were found to follow the pseudo-second-order kinetic model. The values of mass transfer diffusion coefficients (D e) were determined by Boyd model and compared with literature values. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were analysed using the equilibrium constant values (K e) obtained from experimental data at different temperatures. The results showed that biosorption of Cr(VI) and Zn(II) ions onto the DJOC system is more spontaneous and exothermic in nature. The results indicate that DJOC was shown to be a promising adsorbent for the removal of Cr(VI) and Zn(II) ions from aqueous solution.  相似文献   

18.
Kaewsarn P 《Chemosphere》2002,47(10):1081-1085
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.  相似文献   

19.
The studied innovative wastewater treatment process involved the initial abstraction of heavy metal ions onto fungal or stalks biomass (biosorption), followed by the application of a typical flotation stage for the efficient downstream separation of metal-laden biosorbent particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions is a well-known property. Flotation originated from the minerals' processing field; however, it has nowadays found application in the wastewater treatment field. The two processes of biosorption and flotation can be efficiently combined, forming the so-called 'biosorptive flotation' process.  相似文献   

20.
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials.

This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas.

The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW.

Implications: Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号