首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A detailed aerosol source apportionment study was performed with two sampling campaigns, during wintertime and summertime in the heavily polluted metropolitan area of São Paulo, Brazil. In addition to 12 h fine and coarse mode filter sampling, several real time aerosol and trace gas monitors were used. PM10 was sampled using stacked filter units that collects fine (d<2.5 μm) and coarse (2.5<d<10 μm) particulate matter, providing mass, black carbon (BC) and elemental concentration for each aerosol mode. The concentration of about 20 elements was determined using the particle induce X-ray emission technique. Real time aerosol monitors provided PM10 aerosol mass (TEOM), organic and elemental carbon (Carbon Monitor 5400, R&P) and BC concentration (Aethalometer). A complex system of sources and meteorological conditions modulates the heavy air pollution of the urban area of São Paulo. The boundary layer height and the primary emissions by motor vehicles controls the strong pattern of diurnal cycles obtained for PM10, BC, CO, NOx, and SO2. Absolute principal factor analysis results showed a very similar source pattern between winter and summer field campaigns, despite the different locations of the sampling sites of both campaigns, pointing that there are no significant change in the main air pollution sources. The source identified as motor vehicle represented 28% and 24% of the PM2.5 for winter and summer, respectively. Resuspended soil dust accounted for 25% and 30%. The oil combustion source represented 18% and 21%. Sulfates accounts for 23% and 17% and finally industrial emissions contributed with 5% and 6% of PM2.5, for winter and summer, respectively. The resuspended soil dust accounted for a large fraction (75–78%) of the coarse mode aerosol mass. Certainly automobile traffic and soil dust are the main air pollution sources in São Paulo. The sampling and analytical procedures applied in this study showed that it is possible to perform a quantitative aerosol source apportionment in a complex urban area such as São Paulo.  相似文献   

2.

An urban agglomeration (UA), similar to a megalopolis or a metropolitan area, is a region where cities and people are concentrated, and where air pollution has adversely impacted on sustainable and high quality development. Studies on the spatio-temporal trends and the factors which influence PM2.5 concentrations may be used as a reference to support air pollution control policy for major UAs throughout the world. Nineteen UAs in China covering the years 2000–2016 were chosen as the research object, the PM2.5 concentrations being used to reflect air pollution and being estimated from analysis of remote sensing images. The Exploratory Spatial Data Analysis method was used to study the spatio-temporal trends for PM2.5 concentrations, and the Geodetector method was used to examine the factors influencing the PM2.5 concentrations. The results revealed that (i) the temporal trend for the average values of the PM2.5 concentrations in the UAs followed an inverted U-shaped curve and the inflection points of the curve occurred in 2007. (ii) The PM2.5 concentrations in the UAs exhibited significant global spatial autocorrelation with the high–high type and the low–low type being the main categories. (iii) The rate of land urbanization and the structure of energy consumption were the main factors which influenced the PM2.5 concentrations in the UAs.

  相似文献   

3.
A reduction in population exposure to fine particulate matter air pollution (PM2.5) has been associated with improvements in life expectancy. This article presents a reanalysis of this relationship and comments on the results from a study on the reduction of ambient air PM2.5 concentrations versus life expectancy in metropolitan areas of the United States. The results of the reanalysis show that the statistical significance of the correlation is lost after removing one of the metropolitan areas from the regression analysis, suggesting that the results may not be suitable for a meaningful and reliable inference.

Implications: The observed loss of statistical significance in the correlation between the reduction of ambient air PM2.5 concentrations and life expectancy in metropolitan areas of the United States, after removing one of the metropolitan areas from the regression analysis, may raise concern for the policymakers in decisions regarding further reductions in permitted levels of air pollution emissions.  相似文献   

4.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

5.
In 1995, Taiwan's Environmental Protection Administration (EPA/TW) instituted a policy of levying emission taxes on polluters in order to combat the rampant national issue of pollution. Since that time, pollution control strategies, tightening exhaust emission standards for industry, improvements in fuel quality, and new stricter vehicle emission standards, etc., have been implemented. This study evaluates the effectiveness of these measures and examines the improvement of Taiwan's air quality. In this paper, we conduct a detailed analysis of change in the concentrations of pollutants (SO2, NOx and particulate matter [PM]) between two three-year periods (from 1996 to1998 and from 2000 to 2002). The pollution levels were generally lower in the latter period. Concentrations at 14 EPA/TW stations in central Taiwan were simulated and source apportionment analyses in three of Central Taiwan's largest cities were conducted using a trajectory transfer-coefficient air quality model. Correlation coefficients (r) between simulations and observations for the monthly means of the concentrations of SO2, NOx, PM2.5 and PM10 during the study periods at the 14 stations are 0.56, 0.63, 0.70 and 0.31, respectively. The sulfur control policy greatly reduced SO2 concentration island-wide, a stringent emission standard put into place for gasoline vehicles reduced NOx concentration along highways, and an emissions tax placed on construction sites, as well as a regular program for road-dust sweeping, reduced primary particulate matter. Among all of the pollution abatement policies implemented, the most effective method for reducing PM2.5 concentrations in the three largest cities involved the reduction of fine ammonium sulfate aerosols from point sources (56–63% of net PM2.5 reduction). The next largest reduction was attributed to a diminishment in primary PM2.5 emanating from point sources (27–56% of net PM2.5 reduction). Secondary particulate matter, especially sulfate, was reduced from distances up to 150 km leeward of major pollution point sources such as Taichung Power Plant.  相似文献   

6.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

7.
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m3. In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. Implications: The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.  相似文献   

8.
An expanded receptor model was applied to identify and apportion the PM2.5 sources that were common to three different environments (personal, indoor: inside school, and outdoor: outside school) resulting in exposure to asthmatic children who attended a school in Denver, CO for children with moderate to severe asthma. Four resolved external sources and three internal sources were resolved from the PM2.5 data for three different environments. Secondary nitrate and motor vehicle emissions were the two largest external sources in this study. Cooking was the largest internal source. A significant influence of indoor smoking on daily personal exposures to particles was observed for those houses in which smokers reside and the environmental tobacco smoke contribution correlated with urinary cotinine levels in these urban schoolchildren. The influence of the high traffic flow outside the school on the indoor air quality was also observed. The identification and apportionment of these sources will support a subsequent investigation of the potency of air pollution sources on asthma severity in children and provide a better understanding of potential mechanisms of asthma exacerbation.  相似文献   

9.
The present study investigated the comprehensive chemical composition [organic carbon (OC), elemental carbon (EC), water-soluble inorganic ionic components (WSICs), and major & trace elements] of particulate matter (PM2.5) and scrutinized their emission sources for urban region of Delhi. The 135 PM2.5 samples were collected from January 2013 to December 2014 and analyzed for chemical constituents for source apportionment study. The average concentration of PM2.5 was recorded as 121.9 ± 93.2 μg m?3 (range 25.1–429.8 μg m?3), whereas the total concentration of trace elements (Na, Ca, Mg, Al, S, Cl, K, Cr, Si, Ti, As, Br, Pb, Fe, Zn, and Mn) was accounted for ~17% of PM2.5. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon seasons. The chemical composition of the PM2.5 was reconstructed using IMPROVE equation, which was observed to be in good agreement with the gravimetric mass. Source apportionment of PM2.5 was carried out using the following three different receptor models: principal component analysis with absolute principal component scores (PCA/APCS), which identified five major sources; UNMIX which identified four major sources; and positive matrix factorization (PMF), which explored seven major sources. The applied models were able to identify the major sources contributing to the PM2.5 and re-confirmed that secondary aerosols (SAs), soil/road dust (SD), vehicular emissions (VEs), biomass burning (BB), fossil fuel combustion (FFC), and industrial emission (IE) were dominant contributors to PM2.5 in Delhi. The influences of local and regional sources were also explored using 5-day backward air mass trajectory analysis, cluster analysis, and potential source contribution function (PSCF). Cluster and PSCF results indicated that local as well as long-transported PM2.5 from the north-west India and Pakistan were mostly pertinent.  相似文献   

10.
Air pollution emission inventories are the basis for air quality assessment and management strategies. The quality of the inventories is of great importance since these data are essential for air pollution impact assessments using dispersion models. In this study, the quality of the emission inventory for fine particulates (PM2.5) is assessed: first, using the calculated source contributions from a receptor model; second, using source apportionment from a dispersion model; and third, by applying a simple inverse modelling technique which utilises multiple linear regression of the dispersion model source contributions together with the observed PM2.5 concentrations. For the receptor modelling the chemical composition of PM2.5 filter samples from a measurement campaign performed between January 2004 and April 2005 are analysed. Positive matrix factorisation is applied as the receptor model to detect and quantify the various source contributions. For the same observational period and site, dispersion model calculations using the Air Quality Management system, AirQUIS, are performed. The results identify significant differences between the dispersion and receptor model source apportionment, particularly for wood burning and traffic induced suspension. For wood burning the receptor model calculations are lower, by a factor of 0.54, but for the traffic induced suspension they are higher, by a factor of 7.1. Inverse modelling, based on regression of the dispersion model source contributions and the PM2.5 concentrations, indicates similar discrepancies in the emissions inventory. In order to assess if the differences found at the one site are generally applicable throughout Oslo, the individual source category emissions are rescaled according to the receptor modelling results. These adjusted PM2.5 concentrations are compared with measurements at four independent stations to evaluate the updated inventory. Statistical analysis shows improvement in the estimated concentrations for PM2.5 at all sites. Similarly, inverse modelling is applied at these independent sites and this confirms the validity of the receptor model results.  相似文献   

11.
Abstract

The follow-up of a cohort of adults from 29 European centers of the former European Community Respiratory Health Survey (ECRHS) I (1989–1992) will examine the long-term effects of exposure to ambient air pollution on the incidence, course, and prognosis of respiratory diseases, in particular asthma and decline in lung function. The purpose of this article is to describe the methodology and the European-wide quality control program for the collection of particles with 50% cut-off size of 2.5 µm aerodynamic diameter (PM2.5 ) in the ECRHS II and to present the PM2.5 results from the winter period 2000–2001.

Because PM2.5 is not routinely monitored in Europe, we measured PM2.5 mass concentrations in 21 participating centers to estimate background exposure in these cities. A standardized protocol was developed using identical equipment in each center (U.S. Environmental Protection Agency Well Impactor Ninety-Six [WINS] and PQ167 from BGI, Inc.). Filters were weighed in a single central laboratory. Sampling was conducted for 7 days per month for a year.

Winter mean PM2.5 mass concentrations (November 2000–February 2001) varied substantially, with Iceland reporting the lowest value (5 µg/m3) and northern Italy the highest (69 µg/m3). A standardized procedure appropriate for PM2.5 exposure assessmnt in a multicenter study was developed. We expect ECRHS II to have sufficient variation in exposure to assess long-term effects of air pollution in this cohort. Any bias caused by variation in the characteristics of the chosen monitoring location (e.g., proximity to traffic sources) will be addressed in later analyses. Given the homogenous spatial distribution of PM2.5 , however, concentrations measured near traffic are not expected to differ substantially from those measured at urban background sites.  相似文献   

12.
Recently, air pollution has attracted a substantial amount of attention in China, which can be influenced by a variety of factors, but the association between air pollution and human activity is not quite clear. Based on real-time online data (January 1, 2014, to December 31, 2014) of air pollution and meteorology reported by official sites, and demographic, economic, and environmental reform data in a statistical yearbook, the influences of meteorological factors (temperature, relative humidity, precipitation intensity, and wind force) and human activities on PM2.5 pollution were explored. After correlation analysis, logistic regression analysis, and a nonparametric test, weak negative correlations between temperature and PM2.5 pollution were found. In most cases, festival and morning peak hours were protection and risk factors of PM2.5 pollution, respectively. In addition, government actions, such as an afforestation project and increasing financial expenditure for energy saving and environmental protection, could greatly contribute to alleviating pollution of PM2.5. The findings could help officials formulate effective laws and regulations, and then PM2.5 pollution related to the pattern of human activity would be ameliorated.

Implications: Most of the time, festival and morning peak hours are protection and risk factors for PM2.5 pollution, respectively. Increasing the percentage of afforestation area and financial expenditure for energy saving and environmental protection could significantly reduce PM2.5 pollution. The findings can help officials formulate effective laws and regulations, and then PM2.5 pollution related to the pattern of human activity, especially government action, will be ameliorated.  相似文献   


13.
Natural and human activities generate a significant amount of PM2.5 (particles ≤2.5 μm in aerodynamic diameter) into the surrounding atmospheric environments. Because of their small size, they can remain suspended for a relatively longer time in the air than coarse particles and thus can travel long distances in the atmosphere. PM2.5 is one of the key indicators of pollution and known to cause numerous types of respiratory and lung-related diseases. Due to poor implementation of regulations and a time lag in introducing the vehicle technology, levels of PM2.5 in most Asian cities are much worse than those in European environments. Dedicated reviews on understanding the characteristics of PM2.5 in Asian urban environments are currently missing but much needed. In order to fill the existing gaps in the literature, the aim of this review article is to describe dominating sources and their classification, followed by current status and health impact of PM2.5, in Asian countries. Further objectives include a critical synthesis of the topics such as secondary and tertiary aerosol formation, chemical composition, monitoring and modelling methods, source apportionment, emissions and exposure impacts. The review concludes with the synthesis of regulatory guidelines and future perspectives for PM2.5 in Asian countries. A critical synthesis of literature suggests a lack of exposure and monitoring studies to inform personal exposure in the household and rural areas of Asian environments.  相似文献   

14.
15.
Representative profiles for particulate matter particles less than or equal to 2.5 µm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the U.S. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data.
Implications: PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.  相似文献   

16.
Continuous observation of PM2.5 was conducted in Taiyuan, a heavily polluted city in China, during high pollution season from December 2005 to February 2006. The results of this study showed that PM2.5 and carbonaceous species pollution were serious during winter in Taiyuan. The organic carbon (OC) and element carbon (EC) were accounted for 18.6±11.2% and 2.9±1.6% of PM2.5, respectively, which indicated that carbonaceous aerosols were key components for control fine particles pollution in Taiyuan. Coal combustion was a dominant source of OC and EC of PM2.5 in the urban area of Taiyuan during winter. The impact of local and remote particle sources on urban air quality was assessed using PM2.5 concentration rose and 3-day back trajectories of air masses arriving at Taiyuan. The meteorological conditions were found to affect the ambient concentrations of PM2.5, OC, EC and OC/EC ratio.  相似文献   

17.
ABSTRACT

A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standards (NAAQS) for 24-hr PM10. Ambient data were collected at three monitoring sites from October 1996 through July 1999, and included the following: 24-hr PM10 mass, 24-hr PM2.5 and PM10–2.5 mass and chemistry, continuous PM10and PM2.5 mass, continuous meteorological data, and wind-direction-resolved PM2.5 and PM10 mass and chemistry. Ambient-based receptor modeling and wind-directional analysis were employed to help identify major sources or source locations and source contributions. Fine-fraction phosphate was the dominant species observed during PM10 exceedances, though in general, re-suspended coarse dusts from raw and processed materials at the plant were also needed to create an exceedance. Major sources that were identified included the calciners, the CO flares, process-related dust, and electric-arc furnace operations.  相似文献   

18.
Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.

Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.  相似文献   

19.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

20.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号