首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Concentration of ten metals (Cd, Cr, Co, Cu, Fe, Li, Mn, Ni, Pb and Zn) were analyzed in the egg contents, prey and soil samples of little egret (Egretta garzetta) and cattle egret (Bubulcus ibis) from two Headworks to determine habitat and species-specific differences; to assess the importance of prey and habitat contamination as an exposure source for heavy metals. Concentration of Cu, Mn, Cr and Pb in egg contents, Fe, Co, Cu, Mn, Zn in prey and Fe, Co, Cu, Ni, Li in surface soils were significantly different (P < 0.05). Mean metal concentrations of Cr, Pb and Cd were relatively higher in little egret whereas Cu and Mn were higher in the egg contents of cattle egret. The mean concentrations of Cu, Mn and Zn were higher in prey samples of cattle egrets and Cr, Cd and Pb in prey samples of little egrets. In soil samples collected from little egret heronries metal concentrations were higher except Cu and Ni. Correlation Analysis and Hierarchical Agglomerative Cluster Analysis (HACA) identified relatively similar associations of metals and their source identification. Metals such as Fe, Cu, Mn, and Li were related with geochemical origin from parent rock material as well as anthropogenic input whereas Cr, Cd, Pb, Ni, Co and Zn were associated mostly with anthropogenic activities. The study suggested that eggs are useful bio-monitor of local heavy metal contamination.  相似文献   

2.
The primary objective of this study is to assess anthropogenic impacts on the environment by determination of element atmospheric depositions. Bulk depositions were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade. Concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were analyzed by atomic absorption spectrometry and the current deposition fluxes of atmospheric metals were established. Fourier analysis was applied in order to investigate seasonal variation of the monthly data set. Nickel, V, Fe and Al showed pronounced seasonal dependence, while seasonal variation of the other elements was not evident. The enrichment factors of Pb, Zn, Cd and Cu were obviously above those who could have been caused by natural processes, indicating a mainly anthropogenic origin. Nickel was intermediately enriched suggesting participation of both natural and anthropogenic sources. The multivariate receptor model, Unmix, was used to analyze a 5-yr element atmospheric depositions data set. Three main source profiles (mixed road dust, oil combustion and metal processing) were identified and the overall average percentage source contributions determined.  相似文献   

3.
Environmental Science and Pollution Research - Concentrations of 22 essential and non-essential trace elements (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, Th, U, and...  相似文献   

4.
To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap–Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.  相似文献   

5.
Size segregated particulate samples of atmospheric aerosols in urban site of continental part of Balkans were collected during 6 months in 2008. Six stages impactor in the size ranges: Dp?≤?0.49 μm, 0.49?2?≈?30 %) followed by traffic (PC2, σ2?≈?20 %) that are together contributing around 50 % of elements in the investigated urban aerosol. The EF model shows that major origin of Cd, K, V, Ni, Cu, Pb, Zn, and As in the fine mode is from the anthropogenic sources while increase of their contents in the coarse particles indicates their deposition from the atmosphere and soil contamination. This approach is useful for the assessment of the local resuspension influence on element’s contents in the aerosol and also for the evaluation of the historical pollution of soil caused by deposition of metals from the atmosphere.  相似文献   

6.
An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.  相似文献   

7.
The water used by 85% of the Asian population originates in Tibetan Plateau. During April and May of 2006, water samples were collected from four major Asian rivers in the Plateau (i.e. the Salween, Mekong, Yangtze River and Yarlung Tsangpo) and analyzed for Cu, Pb, Zn, Ag, Mo, Cd, Co, Cr, Ni, Li, Mn, Al, Fe, Mg and Hg. The results showed that elements such as Mg were rather high in Tibetan rivers, giving a mean electrical conductance of 36 mS/m. In a few locations, the results also showed relatively high concentrations of Al and Fe (>1 mg/L). However, the concentrations of Cu, Zn, Ag, Cd, and Cr were generally low. Contamination with Pb was identified at a few locations in the Salween and Ni at a few sites in the Yangtze River.  相似文献   

8.
Larner BL  Seen AJ  Snape I 《Chemosphere》2006,65(5):811-820
This work has been the first application of DGT samplers for measuring metals in water and sediment porewater in the Antarctic environment, and whilst DGT water sampling was restricted to quantification of Cd, Fe and Ni, preconcentration using Empore chelating disks provided results for an additional nine elements (Sn, Pb, Al, Cr, Mn, Co, Cu, Zn, As). Although higher concentrations were measured for some metals (Cd, Ni, Pb) using the Empore technique, most likely due to particulate-bound or colloidal species becoming entrapped in the Empore chelating disks, heavy metal concentrations in the impacted Brown Bay were found to be comparable with the non-impacted O'Brien Bay. Sediment porewater sampling using DGT also indicated little difference between Brown Bay and O'Brien Bay for many metals (Cd, Al, Cr, Co, Ni, Cu), however, greater amounts of Pb, Mn, Fe and As were accumulated in DGT probes deployed in Brown Bay compared with O'Brien Bay, and a higher accumulation of Sn was observed in Brown Bay inner than any of the other three sites sampled. Comparison of DGT derived porewater concentrations with actual porewater concentrations showed limited resupply of Cd, Pb, Al, Cr, Mn, Co, Ni, Cu, Zn and As from the solid phase to porewater, with these metals appearing to be strongly bound to the sediment, however, resupply of Fe and Sn was apparent. Based upon our observations here, we suggest that Sn, and to a lesser extent Pb, are critical contaminants.  相似文献   

9.
According to the European Thematic Strategy for Soil Protection, the characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level that allow the detection of sampling sites affected by pollution. In relation to this, the surface horizons of 54 agricultural soils under vegetable crops in the Alicante province (Spain), a representative area of the European Mediterranean region, were sampled to determine the content of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Analytical determinations were performed by atomic absorption spectroscopy after microwave sample digestion in acid solution. Results indicated that heavy metal levels were similar to those reported by authors working on agricultural soils from other parts of the Mediterranean region, with the exception of Cu and Pb in some samples. Multivariate analysis (principal component analysis and cluster analysis) was performed to identify a common source for heavy metals. Moreover, soil properties were determined in order to characterize agricultural soils and to analyze relationships between heavy metal contents and soil properties. The content of Co, Cr, Fe, Mn, Ni and Zn were associated with parent rocks and corresponded to the first principal component called the lithogenic component. A significant correlation was found between lithogenic metals and some soil properties such as soil organic matter, clay content, and carbonates, indicating an important interaction among them. On the other hand, elements such as Cd, Cu and Pb were related to anthropic activities and comprised the second (Cu and Pb) and third principal components (Cd), designated the anthropogenic components. Generally, Cd, Cu and Pb showed a lower correlation with soil properties due to the fact that they remain in available forms in these agricultural soils. Taking into account these results and other achieved in other parts of the European Mediterranean region, it can be concluded that soil quality standards are highly needed to declare soils affected by human induced pollution. This is particularly relevant for anthropogenic metals (Cd, Cu and Pb, and in some areas also Zn). Further research in other agricultural areas of the region would improve the basis for proposing such soil quality standards.  相似文献   

10.
An ozone flux-response relationship for wheat   总被引:2,自引:0,他引:2  
The concentrations of heavy metals in the fine fraction (<63 microm) of 19 surficial sediment samples from the border region of Baja California (Mexico) and California (USA) were determined. The concentration ranges (in microg g(-1)) of the metals were: Cu, 4.9-23; Zn, 39-188; Ni, 16-44; Cr, 56-802; Pb, 6-21; Cd, 0.08-0.64; Ag, 0.01-0.28; and Mn, 392-1506; the intervals (percentage) for Fe and Al were 1.36-4.6 and 3.61-8.55, respectively. The heavy metals in these sediments indicate a relative enrichment of Cr (>3000%), Zn (>350%), Ni (>300%) and Cu (>150%) off the wastewater outfall at Punta Bandera in Tijuana, Baja California, with respect to non-polluted sediments of the region. Pb, Cd and Ag have low concentrations off the same outfall and enrichment factors are generally lower than 300% (Pb) and lower than 150% (Cd and Ag). This suggests that these metals have a different origin, or that they are controlled by a different geochemical mechanism than the former. The concentrations of Mn, Fe and Al occurred within ranges typical for coastal areas and probably reflect the mineralogical composition of the sediments of the region.  相似文献   

11.
A comparative study on metal sorption by brown seaweed   总被引:7,自引:0,他引:7  
Tsui MT  Cheung KC  Tam NF  Wong MH 《Chemosphere》2006,65(1):51-57
This study compared the sorption of Ag, Cd, Co, Cd, Mn, Ni, Pb and Zn by a Ca-treated Sargassum biomass at pH 5.0, under low and high ionic strength (IS) conditions. The sorption isotherms of As [As(V)] and Cr [Cr(III) and Cr(VI)] were also determined at low IS. The isotherm data for the eight cationic metals and Cr(III) were well fitted by Langmuir equations. Generally, the maximum metal uptake (Umax) followed: Cr(III) > Pb approximately Cu > Ag approximately Zn approximately Cd > Ni approximately Mn approximately Co > Cr(VI) > As(V) at low IS and Pb > Cu > Co > Mn approximately Cd > Zn approximately Ag > Ni at high IS. As(V) did not bind to the seaweed at pH 5.0. The results indicated that sorption of Pb was not affected by the increasing IS, though the percentage of free Pb ions in the water was greatly reduced as predicted by the speciation model. High IS lowered Umax by 10-36% (except Co and Pb), and lowered the affinity constant of the metal by 33-91% for all cationic metals, as compared to low IS. Moreover, the removal efficiency of the cationic metals and Cr decreased exponentially with initial metal concentrations and was lower at high IS. Ion-exchange was the mechanism responsible for the cationic metal sorption onto the seaweed, and Na ion interfered with the cationic metal binding through electrostatic interaction. In conclusion, this study showed the differential binding capacity of the Sargassm biomass for different metals and oxidation states and the differential effects of IS. According to the present results, Sargassum may be considered a good biosorbent for cationic metals (especially Pb) in both low and high-salt containing wastewater.  相似文献   

12.
The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206Pb/207Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary.  相似文献   

13.
Environmental Science and Pollution Research - The concentrations, sources, and risks of heavy metals (Fe, Al, Mn, Cr, Co, Ni, Cu, Zn, As, Cd, W, Pb, and Tl) in sediments in five river-lake...  相似文献   

14.
2006-2007年采暖季、风沙季和非采暖季分别在抚顺市的6个采样点采集PM10样品,用等离子体原子发射光谱(ICP-AES)法测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量,并用地质累积指数对其污染状况进行初步评价。结果表明:(1)从PM10中元素在不同采样点的含量看,抚顺市PM10中Ti、Mn、Mg、Cu、Zn、Pb、Cr、Ni、Co这9种元素在各采样点间的差别较大;Al、Ca、Na、K、As、Cd、Fe、V这8种元素差别较小。(2)从PM10中元素在不同采样季的含量看,抚顺市PM10中Mn、Mg含量的季间差别较大,其余15种元素季间差别较小。(3)Zn、Cd污染较重;Ti、Al、Mg、Ca、Na、K、As、Fe和V污染较轻;其他6种元素在6个采样点和3个采样季污染程度差别较大。(4)水库采样点各元素污染级别均不是最高;新华采样点PM10中Cu、Zn、Pb、Cr、Ni、Co、Cd污染级别均较高。(5)3个采样季PM10中Cd、Zn污染均较重,属于重度或严重污染;在采暖季PM10中Cu、Pb、Cr的地质累积指数较风沙季、非采暖季大;在非采暖季PM10中Mn、Co受到的污染比采暖季和风沙季稍严重。  相似文献   

15.
In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment–water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m?2 day?1) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.  相似文献   

16.
Concentrations of As, Al, Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sb, Sn, Sr, Tl, V and Zn were analyzed by inductively coupled mass spectrometry (ICP-MS) in the intestinal helminth Pomphorhynchus laevis and its host Barbus barbus. The fish were caught in the Danube river downstream of the city of Budapest (Hungary). Ten out of twenty one elements analyzed were found at higher concentrations in the acanthocephalan than in different tissues (muscle, intestine, liver and kidney) of barbel. Considering the fish tissues, most of the elements were present at highest concentrations in liver, followed by kidney, intestine and muscle. Spearman correlation analyses indicate that there is competition for metals between the parasites and the host. The negative relationships between parasite number and metal levels in organs of the barbel support this hypothesis. The bioconcentration factors for Ag, As, Ba, Bi, Cu, Ga, Mn, Pb, Sr, Tl, and Zn showed that the parasites concentrated metals to a higher degree than the fish tissues. They accumulated the metals As, Cd, Cu, Fe, Ni, Pb, Sr and Zn even better than established bioindicators such as the mussel Dreissena polymorpha as revealed by data from the literature. The results presented here emphasize that acanthocephalans of fish are very useful as sentinels for metal pollution in aquatic ecosystems. Ratio of metal concentrations in the parasites and the host tissues provide additional information. Not including acanthocephalans in accumulation bioindication studies with fishes (as still customarily done) may lead to false results.  相似文献   

17.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

18.
Chabukdhara M  Nema AK 《Chemosphere》2012,87(8):945-953
The aim of this study was to assess the level of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface sediments of the Hindon River, India that receives both treated and untreated municipal and industrial discharges generated in and around Ghaziabad, India. Mean metals concentrations (mg kg−1) were in the range of; Cu: 21.70-280.33, Cd: 0.29-6.29, Fe: 4151.75-17318.75, Zn: 22.22.50-288.29, Ni: 13.90-57.66, Mn: 49.55-516.97, Cr: 17.48-33.70 and Pb: 27.56-313.57 respectively. Chemometric analysis was applied to identify contribution sources by heavy metals while geochemical approaches (enrichment factor and geo-accumulation index) were exploited for the assessment of the enrichment and contamination level of heavy metals in the river sediments. Chemometric analysis suggested anthropic origin of Cu, Cd, Pb, Zn, and Ni while Fe showed lithogenic origin. Mn and Cr was associated and controlled by mixed origin. Geochemical approach confirms the anthropogenic influence of heavy metal pollution in the river sediments. The study suggests that a complementary approach that integrates chemometric analysis, sediment quality criteria, and geochemical investigation should be considered in order to provide a more accurate appraisal of the heavy metal pollution in river sediments. Consequently, it may serve to undertake and design effective strategies and remedial measures to prevent further deterioration of the river ecosystem in future.  相似文献   

19.
Mussels are commonly used to monitor metal pollution despite high inter-individual variability in tissue concentrations. In this study, influences of body size, condition index and tidal height on concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were investigated. Body weight was inversely related to metal concentrations and for Cd, Mn, Pb and Zn the regression was affected by tidal height. Except for As, Fe and Mn metal concentrations were inversely related to physiological status though no differences between essential and non-essential metals were obvious. After correcting for body size, tidal height was related positively to As, Cd and Zn, negatively related to Cu, Fe and Mn while Co, Cr, Ni and Pb were independent of tidal height. The study recommends stringent measures during sampling for biomonitoring or metal concentrations at each location must be normalized to a common body size, CI and tidal height.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号