首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
We estimated silicate uptake kinetics for 8 spring diatom species using a model based on time series measurements of the depletion of dissolved silicate (DSi) and increases in biomass. Furthermore, the carbon: nitrogen: silicate stoichiometric relationships and maximum growth rates were determined. Differences in DSi uptake kinetics and maximum growth rate were distinct among the species. All the most common diatom species (Chaetoceros wighamii, Pauliella taeniata, Skeletonema costatum and Thalassiosira baltica) were relatively lightly silicified and had variable but relatively low half-saturation constants (K s ), indicating that they are well adapted to low DSi concentrations. The less common Diatoma tenuis and Nitzschia frigida had higher K s values, suggesting that they are more vulnerable to DSi limitation. The much used nitrogen:silicate ratio of 1 for marine diatom biomass was too low for most of the examined species, while a ratio of 2–3 seems to be more appropriate for these Baltic Sea species.  相似文献   

2.
Cellular levels of particulate organic sulfur (POS) and dimethylsulfoniopropionate (DMSP) were determined in cultures of five species of marine phytoplankton, Amphidinium carterae, Prorocentrum minimum, Emiliania huxleyii, Dunaliella tertiolecta and Skeletonema costatum. The first three are known producers of DMSP while the latter two produce little or non-detectable amounts of DMSP. In those species which produced significant amounts of DMSP, intracellular levels of POS and DMSP varied for the dinoflagellates (A. carterae and P. minimum) while they remained fairly constant for the prymnesiophyte (E. huxleyii) over the growth cycle (until late stationary phase), and DMSP accounted for the majority of the POS (50 to 100%). In species with low levels of DMSP, intracellular POS and DMSP decreased or remained constant over the growth cycle, and DMSP accounted for a much lower percentage of the POS (0 to 40%). Species with high DMSP concentrations had higher POS levels per unit cell volume as well, and DMSP accounted for substantially higher percentages of the particulate organic carbon (POC). Molar N:S ratios suggest a non-protein origin for much of the sulfur in the species producing DMSP. During late stationary phase, an increasing percentage of the DMSP became extracellular in the dinoflagellate and diatom (S. costatum) cultures, suggesting leakage. In a bacterized algal culture, measured quantities were considerably less than in an axenic counterpart, suggesting consumption.  相似文献   

3.
The quantitative significance of the nitrogenous compound glycine betaine (GBT) and its sulfur analog dimethylsulfoniopropionate (DMSP) to intracellular pools in marine phytoplankton is not well known. In a series of experiments conducted in August 1993, we measured these compounds, as well as total organic sulfur, carbon, and nitrogen, over the growth cycle in six isolates of marine phytoplankton, Amphidinium carterae Hulburt, Chrysochromulina sp. Lackey, Emiliania huxleyi Hay et Mohler, Prorocentrum minimum (Pavillard) Schiller, Skeletonema costatum (Greville) Cleve, and Tetraselmis sp. At the same time, we measured cellular concentrations of protein, amino acids, chlorophyll, and inorganic nutrients. All six species produced DMSP, while three produced GBT at lesser levels. In the Chrysochromulina sp. isolate, levels of GBT were greater than DMSP during the exponential phase of growth, but declined sharply as the culture approached stationary phase. This change appeared to coincide with the onset of nitrogen limitation. Other nitrogenous osmolytes were produced in five of the six species but in much smaller quantities. DMSP contributed significantly to cellular sulfur throughout the growth cycle although, in some algae, the proportion of dissolved DMSP increased substantially during stationary growth. When present, GBT formed a sizeable fraction of the cellular nitrogen only during exponential growth. A significant percentage (ca. 50%) of the organic nitrogen could not be accounted for even when cellular pools of protein, amino acids, inorganic nitrogen, and nitrogenous osmolytes were combined. Based on these experiments, there does not appear to be a reciprocal relationship between DMSP and GBT production, although GBT production does appear to be correlated with nitrogen availability. Received: 5 January 1998 / Accepted: 29 June 1999  相似文献   

4.
We measured development, growth and juvenile mortality of the common copepod Temora longicornis on 11 different monospecific diatom diets in order to estimate (1) how common the negative effects of diatoms are on the development of this copepod and (2) whether the arrested development is connected to deleterious polyunsaturated aldehydes (PUA) or food nutritional quality. Four diatom species (Thalassiosira weissflogii, Thalassiosira rotula CCMP1647, Leptocylindricus danicus CCPM469 and Skeletonema costatum CCMP1281) supported complete development, whereas development failed in or before metamorphosis on seven diatom species/strains (Chaetoceros affinis CCMP158, C. decipiens CCMP173, C. socialis, T. rotula CCMP1018, Thalassiosira pseudonana CCMP1010 and CCMP1335). However, four out of these seven species were not ingested by nauplii, either due to morphology (Chaetoceros spp.) or large size (T. pseudonana CCMP1010). The growth rate did not correlate with the ingestion rate of PUA, neither with ingestion of food mineral (nitrogen) nor with biochemical (polyunsaturated fatty acids, sterols) components. We show that, although some diatoms are of inferior food quality, this is unlikely to be connected to toxicity or due to a direct limitation by a single food nutritional compound.  相似文献   

5.
The effect of nutrient (N, P, and Si) depletion on sinking rates was studied for two small (Skeletonema costatum (Grev.) Cleve and Chaetoceros gracile Schütt) and two large [Ditylum brightwellii (West) Grun and Coscinodiscus wailesii (Gran et Angst)] centric diatoms obtained from stock cultures. Each diatom was examined under conditions of (1) nutrient repletion (=log growth phase), (2) nutrient depletion (48 h without a given substrate), and (3) recovery (24h after addition of limiting substrate to nutrient-deplete populations). All nutrient-replete cultures displayed low sinking rates despite large differences in cell size. In nutrient-deplete populations, sinking rate was related to the kind of nutrient depleted and varied among species. Silicate depletion elicited by far the greatest increase in sinking rates in all 4 species, indicating that biochemical aspects of silicon metabolism are more important to buoyancy regulation than density-related variations in the amount of silicon per cell. Since N- and P-depletion caused lower sinking rates in 3 of the species, this observation calls for re-evaluation of the axiom that nutrient depletion necessarily causes increased sinking rates. The exception was Coscinodiscus wailesii, which sank faster under all types of nutrient limitation. In most cases, sinking rates typical of log-phase cultures were not regained within 24 h after the addition of limiting nutrient to nutrient-depleted populations. Ultimately, the length of the recovery period may be useful in identifying the metabolic processes responsible for buoyancy regulation in actively growing cells.  相似文献   

6.
Otoliths of five Hygophum species were examined by means of light and scanning electron microscopy. In otoliths of four species (H. benoiti, H. macrochir, H. reinhardtii and H. taaningi) a strong cyclic pattern of the incremental structure was observed. In the fifth species (H. hygomii) such a pattern did not exist. An analysis of archival data on mesopelagic collections suggested three types of Hygophum spp. migratory behavior in relation to the lunar cycle which corresponded with the otolith microstructure. In H. hygomii only limited influence of moon phase on the uppermost range of night-vertical migration toward the surface was observed. The abundant nighttime occurrence of this species moved from the 0 to 50 m into the 50 to 100 m depth strata at full moon. In H. benoiti, a great part of the population, mainly juveniles, showed a tendency toward cessation of the vertical migrations during the first and fourth quarters of the lunar cycle. H. macrochir and H. taaningi had the strongest correlation of behavior with the lunar cycle. Both species showed arrested vertical migrations at the new moon phase, staying at day depths during the night, i. e., below 400 m. Thus, sequences of clear growth increments in otoliths represented a fast-growth period associated with the night migration to the warm surface layers, while bands without easily distinguishable incremental structure were interpreted as a period of slow growth in deep, cold waters due to limitation of the upward migration range occurring approximately at new moon.  相似文献   

7.
Productivity was studied in two diatom species, Chaetoceros armatum T. West and Asterionella socialis Lewin and Norris, which form persistent dense blooms in the surf zone along the Pacific coast of Washington and Oregon, USA. Past observations have shown that surf-diatom standing stock usually declines in summer along with concentrations of nitrate and ammonium. Using the 14C method, photosynthetic rates in natural surf samples were measured monthly for one year (October 1981 through September 1982) at a study site on the Washington coast. Also measured were temperature, salinity, dissolved nutrients, particulate carbon and nitrogen (used as estimates of phytoplankton C and N), and chlorophyll a. Assimilation numbers (P max) were higher in summer (5 to 8 g C g-1 chl a h-1) than in winter (3 to 4gC). Specific carbon incorporation rates (µmax) showed no obvious seasonality, mostly falling within the range of 0.09 to 0.13 g C g-1 C(POC) h-1. The discrepancy between the seasonal trends for chlorophyll-specific and carbon-specific rates reflects a change in the carbon-to-chlorophyll ratio. Because of seasonal differences in daylength and light intensity, daily specific growth rates () are thought to be higher in summer than in winter. Neither ammonium enrichment assays nor particulate carbon-to-nitrogen ratios provided convincing evidence for nitrogen limitation during summer, and the observed changes in diatom abundance cannot be explained on this basis. Both the high diatom concentrations and their seasonal variations probably are due mainly to factors other than growth rates; two factors considered important are diatom flotation and seasonal changes in wind-driven water transport. C. armatum usually dominates the phytoplankton biomass in the surf zone, and evidence suggests that this species is strongly dominant in terms of primary production.Contribution No. 1391 of the School of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

8.
Spring diatom flowerings in Bedford Basin, Nova Scotia, almost exhausted the available nitrogen supplies. The supply of nitrate appeared to regulate the magnitude of the bloom. Other nutrient supplies may also have been limiting. Certain alterations in quantities of major metabolites could be interpreted in terms of nitrogen limitation. Nitrate, (nitrite), and ammonium were generally utilized simultaneously by Thalassiosira nordenskioldii, the dominant bloom organism. This species did not effectively utilize urea in either laboratory culture or in the natural environment. T. fluviatilis simultaneously utilized all nitrogen sources provided in laboratory experiments simulating natural nutrient conditions.  相似文献   

9.
The metabolite exchange in alga–invertebrate symbioses has been the subject of extensive research. A central question is how the biomass of the algal endosymbionts is maintained within defined limits under a given set of environmental conditions despite their tremendous growth potential. Whether algal growth is actively regulated by the animal cells is still an open question. We experimentally evaluated the effect of inorganic nutrient supply and host-animal nutritional status on the biomass composition, growth and cell-cycle kinetics of the endosymbiotic dinoflagellate Symbiodinium pulchrorum (Trench) in the sea anemone Aiptasia pulchella. Dinoflagellates in anemones starved for 14?d exhibited lower growth rates, chlorophyll content and higher C:N ratios than in anemones fed Artemia sp. (San Francisco brand #65034) nauplii every 2 d, indicating N-limitation of the algae during starvation of the host animal. Manipulation of the dissolved inorganic nutrient supply through ammonium and phosphate additions induced a rapid recovery (half time, t ½~ 2?d) in the C:N ratio of the dinoflagellate cells to levels characteristic of N-sufficient cells. The mitotic index and population growth rate of the dinoflagellate symbionts subjected to this enrichment did not recover to the levels exhibited in fed associations. Flow cytometric analysis of dinoflagellate cell size and DNA content revealed that the duration of the G1 phase (first peak of DNA content: 70 to 100 relative fluorescence units, rfu) of their cell cycle lengthened dramatically in the symbiotic state, and that the majority of algal biomass increase occurred during this phase. Covariate analysis of dinoflagellate cell size and DNA-content distributions indicated that the symbiotic state is associated with a nutrient-independent constraint on cell progression from G1 through the S phase (intermediate DNA content: 101 to 139?rfu). This analysis suggests that the host-cell environment may set the upper limit on the rate of dinoflagellate cell-cycle progression and thereby coordinate the relative growth rates of the autotrophic and heterotrophic partners in this symbiotic association.  相似文献   

10.
A change in the Si:N ratio of diatom cells during growth was examined for Chaetoceros socialis and Thalassiosira sp., with different initial silicate to nitrate (Si:N) ratios in the media. During exponential growth, C. socialis assimilated silicate and nitrate with a molar ratio of 0.5, independent of the ratio in the media, but after the depletion of nitrate, silicate continued to be taken up, and the Si:N ratio in the stationary phase increased to 2 as a function of the Si:N ratios in the media. In contrast, the ratio of silicate to nitrate taken up by Thalassiosira sp. increased with an increase in the Si:N ratio in the media. The Si:N ratio in the cells during the stationary phase increased in response to an increase in this ratio in the media. The Si:chl  a ratio also increased with the increase in the initial Si:N ratio in the media, while the N:chl  a ratio did not change to a great extent, indicating the changes in the cellular Si:N ratio was derived from changes in the Si content of the cells. These results indicated that the cellular Si:N ratio changed with the Si:N ratio in the medium, and the Si:N uptake ratio during the growth phase was different depending on diatom species. Thus, the dominance of different diatom species may affect nutrient composition and dynamics in the ocean.  相似文献   

11.
The effects of nitrate limitation and nitrate starvation on the photochemical efficiency of photosystem II (Fv/F m) were examined in batch cultures of two species of symbiotic dinoflagellates, Symbiodinium kawagutii and S. pilosum. F v/F m values were determined along growth curves and show that the F v/F m values are negatively correlated with external nitrogen concentrations in cultures of both species. Changes in growth irradiances in the batch cultures due to increments of the cell densities were estimated S. kawagutii cultures showed a negative correlation between F v/F m and growth irradiance. These results indicate that F v/F m is dependent on the light history of the cultures and on the individual sensitivity of each species, and independent of their nutrient status. Nitrate starvation was analyzed by measuring changes in the quantum yield of fluorescence (Fv/F m), electron transport rate (ETR) and non-photochemical quenching (NPQ) at five time points along the growth curves under three conditions: control (C), without nitrogen (N–), and with ammonia (N+) as a nitrogen source sufficient to meet daily nitrogen requirements. Cells collected during the exponential growth phase and exposed to N– and N+ showed significant reductions in their maximum ETR relative to controls (20% in S. pilosum and 40% in S. kawagutii). The loss of electron transport capacity is consistent with a sink limitation rather than the result of nitrogen starvation. Under nitrate-starvation, the induction of NPQ resulted in effective protection against photosystem II damage in S. pilosum. In contrast, S. kawagutii cells failed to induced NPQ resulting in a concomitant increase in the excitation pressure over photosystem II leading to damage. Collectively the data indicate that F v/F m is not a robust indicator of nitrogen limitation in symbiotic dinoflagellates and that protection against photosystem II damage under sink limitations, is largely dependent on the differential capacities of each species to induce NPQ.Communicated by P.W. Sammarco, Chauvin  相似文献   

12.
In recent studies, we developed a combined nutrient removal-marine aquaculture process for the tertiary treatment of wastewater and the production of commercially important shellfish. Part of this process consists of an outdoor mass cultivation system for marine algae. During our previous experiments we observed that marine diatoms almost exclusively are the dominant algal species in our outdoor cultures. To better understand this phenomenon of diatom dominance we grew 16 species of marine algae in continuous monoculture under laboratory conditions simulating to some degree the conditions prevailing in our outdoor experiments. Species such as Skeletonema costatum, Monochrysis lutheri and Tetraselmis sp., which were never dominant in our outdoor cultures, grew as well in monoculture, as Phaeodactylum tricornutum, frequently, the prevalent species outdoors. However, when monocultures of Dunaliella tertiolecta and Thalassiosira pseudonana (3H) were purposely contaminated with P. tricornutum, the latter species quickly became dominant. It is suggested that a complex interaction of environmental factors is usually responsible for the dominance of a particular species; one such factor may be the nitrogen source in the growth media. Under conditions of virtually, complete nitrogen assimilation, the carbon: nitrogen ratio in the algae was high (7 to 8) when NO 3 - –N was the source of nitrogen, and low (4 to 6) when NH 4 + –N was the prime form of nitrogen. When algal growth was low, resulting in a large inorganic nitrogen residue, the carbon:nitrogen ratio was low regardless of whether NO 3 - –N or NH 4 + –N was the main nitrogen source.Contribution No. 3297 from the Woods Hole Oceanographic Institution.  相似文献   

13.
Three marine diatoms, Skeletonema costatum, Chaetoceros debilis, and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a, N:chlorophyll a, P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a, and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH4-starved cells contained more chlorophyll a, carbon, nitrogen, silica, and phosphorus per cell volume than NH4-limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a, P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a, N:chlorophyll a, C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH4-limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Contribution No. 943 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

14.
Mesocosm experiments coupled with dilution grazing experiments were carried out during the phytoplankton spring bloom 2009. The interactions between phytoplankton, microzooplankton and copepods were investigated using natural plankton communities obtained from Helgoland Roads (54°11.3′N; 7°54.0′E), North Sea. In the absence of mesozooplankton grazers, the microzooplankton rapidly responded to different prey availabilities; this was most pronounced for ciliates such as strombidiids and strobilids. The occurrence of ciliates was strongly dependent on specific prey and abrupt losses in their relative importance with the disappearance of their prey were observed. Thecate and athecate dinoflagellates had a broader food spectrum and slower reaction times compared with ciliates. In general, high microzooplankton potential grazing impacts with an average consumption of 120% of the phytoplankton production (P p ) were measured. Thus, the decline in phytoplankton biomass could be mainly attributed to an intense grazing by microzooplankton. Copepods were less important phytoplankton grazers consuming on average only 47% of P p . Microzooplankton in turn contributed a substantial part to the copepods’ diets especially with decreasing quality of phytoplankton food due to nutrient limitation over the course of the bloom. Copepod grazing rates exceeded microzooplankton growth, suggesting their strong top-down control potential on microzooplankton in the field. Selective grazing by microzooplankton was an important factor for stabilising a bloom of less-preferred diatom species in our mesocosms with specific species (Thalassiosira spp., Rhizosolenia spp. and Chaetoceros spp.) dominating the bloom. This study demonstrates the importance of microzooplankton grazers for structuring and controlling phytoplankton spring blooms in temperate waters and the important role of copepods as top-down regulators of microzooplankton.  相似文献   

15.
We have performed life table experiments to investigate the effects of different food types and concentrations on the larval development and survival up to adulthood of Acartia tonsa. The food species offered comprised a wide taxonomic spectrum: the pigmented flagellates Isochrysis galbana, Emiliania huxleyi, Rhodomonas sp., Prorocentrum minimum, the diatom Thalassiosira weissflogii, grown on medium offering enriched macronutrient concentrations and the ciliate Euplotes sp. initially cultured on Rhodomonas. For the ciliate species, also the functional response was studied. In order to avoid limitation by mineral nutrients, food algae have been taken from the exponential growth phase of the nutrient replete cultures. The suitability of Rhodomonas as a food source throughout the entire life cycle was not a surprise. However, in contrast to much of the recent literature about the inadequacy or even toxicity of diatoms, we found that also Thalassiosira could support Acartia-development through the entire life cycle. On the other hand, Acartia could not complete its life cycle when fed with the other food items, Prorocentrum having adverse effects even when mixed with Rhodomonas and Thalassiosira. Isochrysis well supported naupliar survival and development, but was insufficient to support further development until reproduction. With Emiliania and Euplotes, nauplii died off before most of them could reach the first copepodite stages. Acartia-nauplii showed a behavioral preference for Euplotes-feeding over diatom feeding, but nevertheless Euplotes was an insufficient diet to complete development beyond the naupliar stages.  相似文献   

16.
Of the two resting life-forms of the planktonic diatom Chaetoceros pseudocurvisetus Mangin formed during periods of nitrate depletion, resting spores survived at least 1 month after spore formation at 24 °C, while resting cells survived only for about 10 d at the same temperature. Under nitrogen limitation, resting cells exhibited higher specific death rates than resting spores at temperatures ranging from 5 to 30 °C. After nitrogen replenishment, resting spores required a certain lag period of about 1 d to initiate vegetative growth at levels of nitrate supply from 0.5 to 20 M, while resting cells initiated vegetative growth almost immediately. Resting spores exhibited an intracellular accumulation of the supplied nitrate during germination and initial vegetative growth. The resting cells, however, exhibited more active vegetative growth, closely coupled with the uptake of the supplied nitrate. The resting spores and resting cells appear to play different roles in the maintenance of populations under nutrient fluctuations depending on the interval length between nutrient fluxes in natural waters. Received: 27 April 1998 / Accepted: 1 March 1999  相似文献   

17.
Recent evaluations of estuarine and coastal nutrient budgets implicate atmospheric deposition as a potentially significant (20 to 30%) source of biologically available nitrogen. We examined the potential growth stimulating impact of atmospheric nitrogen loading (ANL), as local rainfall, in representative shallow, nitrogen limited North Carolina mesohaline estuarine and euhaline coastal Atlantic Ocean habitats. From July 1988 to December 1989, using in situ bioassays, we examined natural phytoplankton growth responses, as14CO2 assimilation and chlorophylla production, to rain additions over a range of dilutions mimicking actual input levels. Rainfall at naturally occurring dilutions (0.5 to 5%) stimulated both14CO2 assimilation and chlorophylla production, in most cases in a highly significant manner. Parallel nutrient enrichments consistently pointed to nitrogen as the growth stimulating nutrient source. Generally, more acidic rainfall led to greater magnitudes of growth stimulation, especially at lower dilutions. Nutrient analyses of local rainfall from May 1988 to January 1990 indicated an inverse relationship between pH and NO 3 - content. There have been growing concerns regarding increasing coastal and estuarine eutrophication, including ecologically and economically devastating phytoplankton blooms bordering urban and industrial regions of North America, Europe, Japan, and Korea. It appears timely, if not essential, to consider atmospheric nutrient loading in the formulation and implementation of nutrient management strategies aimed at mitigating coastal eutrophication.  相似文献   

18.
 Laboratory culture experiments were performed to study the changes in size-fractionated Fe concentrations during the growth of the oceanic diatom Chaetoceros sp. Fe concentration was estimated for three size fractions: large labile particles (>0.2 μm), small colloidal particles (0.2 μm to 200 kDa) and soluble species (<200 kDa). The size-fractionated Fe concentration in the nutrient-enriched filtered seawater medium without diatom cells became stable within 4 d after the spike of FeCl3 solution. Light irradiation by white fluorescent tubes with a 14 h light:10 h dark cycle did not significantly alter concentrations of the size-fractionated Fe. For the phytoplankton culture experiment, Fe-starved diatom cells were inoculated into the nutrient-enriched media aged for 19 d after the addition of FeCl3. With the growth of diatom cells, total acid-labile Fe concentrations decreased from 0.60 to 0.46 nM during 7 d of incubation. However, only the concentration of the small colloidal particles showed a significant decrease; the concentration of the other size fractions remained relatively constant. Although the media still contained sufficient amounts Fe as large labile particles and soluble species, diatom cells appeared to be Fe-limited once Fe as small colloidal particles had been used up. These results suggest that Fe in the small colloidal particle fraction was the most dynamic size fraction during the growth of the diatom Chaetoceros sp. In addition, to better understand Fe dynamics in the ocean, we must consider the influence of phytoplankton growth on small colloidal Fe [which is typically included in the dissolved Fe fraction (<0.2 μm)]. Received: 9 December 1999 / Accepted: 5 May 2000  相似文献   

19.
The relative growth rates of juvenile Macrocystis pyrifera in southern California kelp forests were substantially reduced during the El Niño of 1982–1984. The lower growth rates were correlated with increased temperature and decreased nitrogen availability. Fertilization of juvenile plants with slow-release nitrogen-phosphorus fertilizer increased their growth rates to levels previously observed when temperatures were low and nutrient levels were high. The limitation in growth of M. pyrifera by levels of available nutrients during El Niño was in contrast to the usual limitation of growth by irradiance during non-El Niño years. Thus, there was a shift in the relative importance of factors controlling growth of juvenile M. pyrifera during El Niño.  相似文献   

20.
The hydrodynamics and nitrogen/silicon biogeochemistry accompanying the development of a red-tide assemblage were examined in the Ría de Vigo (northwest Spain), a coastal embayment affected by upwelling, during an in situ diel experiment in September 1991. Despite a low N:Si molar ratio (0.5) of nutrients entering the surface layer, which was favourable for diatom growth, the diatom population began to decline. Limited N-nutrient input, arising from moderate coastal upwelling in a stratified water column, restricted net community production (NCP = 630 mg C m−2 d−1). In addition, light-limitation of gross primary production (GPP = 1525 mg C m−2 d−1) was observed. The relatively high f-ratio (= NCP:GPP) recorded (0.41, characteristic of intense upwelling conditions) would have been as low as 0.15 had not GPP been limited by light intensity. Temporal separation of carbohydrate synthesis during the photoperiod from protein synthesis in the dark could be inferred from the time-course of the C:N ratio of particulate organic matter. Severe light-limitation would lead to diatom collapse were the diatoms not able to meet all their energy requirements during the hours of darkness. Under the hydrodynamic, nutrient and light conditions of the experiment, an assemblage of red-tide-forming species began to develop, aided by their ability to migrate vertically and to synthesize carbohydrates during the light in surface waters and protein during the dark at the 4 m-deep pycnocline. Thermal stratification, reduced turbulence, intense nutrient mineralization, and the limited nitrogen input through moderate upwelling were all favourable to the onset of a red-tide assemblage. Received: 15 February 1997 / Accepted: 26 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号