首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Seedlings of Vicia faba L., Phaseolus multiflorus L. and Pisum sativum L. were raised during exposure to simulated acid rainfall treatments of pHs 5.6, 4.5, 3.5 and 2.5 at a rate of 30 mm per week. All three species were found to be adversely affected by the more acid pH 3.5 and pH 2.5 treatments after 7-8 weeks of exposure. There were total plant dry weight reductions of 40% for V. faba, 31% for P. sativum and 28% for P. multiflorus exposed to the pH 2.5 treatment, as compared to those grown in the control (pH 5.6 treatment). In addition, V. faba was found to be sensitive to the pH 4.5 treatment with an 18% reduction in total plant weights (compared to plants grown in the pH 5.6 treatment). In P. multiflorus, reduction in the dry weights of shoots in response to increasing acidity of rain was not accompanied by reduction in root weights, indicating an interference in the partitioning of assimilates. It is concluded that these three species, and V. faba in particular, may be growing below their potential in much of the UK.  相似文献   

2.
The occurrence of various visible symptoms of foliar injury was assessed on a 5-point scale for each of the species. There was a distinct increase in the incidence of most types of injury in plant material which has been exposed to pH 2.5 acid fog. No clear pH-related trend in foliar injury occurred in plants exposed to acid fog at pH 3.5, pH 4.5 and pH 5.6, indicating that a threshold for a range of different types of visible injury may exist between pH 2.5 and pH 3.5 for all four species.  相似文献   

3.
Seedlings of winter barley, perennial ryegrass and white clover were grown on a range of British soils for 21-24 weeks and exposed to simulated acid rainfall treatments of pHs 5.6, 4.5, 3.5 and 2.5. Whilst leaves of white clover developed leaf lesions after 18 weeks of exposure to the pH 2.5 treatments, there were no signs of visible injury to the other two species. At harvest, it was noted, for all species, that there was a large amount of variation in the sizes of individual plants and this made it difficult to detect differences between the treatments for plants on an individual soil. However, in combined analyses for all soils, it was found that the treatments had substantial effects on the yields of plants. The yields of both winter barley and clover were highly correlated with rainfall pH, showing substantial reductions in the more acid rains as compared to the pH 5.6 (control) treatment. In contrast, plants of perennial ryegrass produced higher yields of shoots at the most acid (pH 2.5) as compared to the other treatments. It was noted that the pH 2.5 treatment resulted in a generally lower soil pH at the termination of the experiment.  相似文献   

4.
The present experiment was aimed at assessing the impact of simulated acidic precipitation (SAR) on growth, biomass accumulation and yield of two cultivars of wheat (Triticum aestivum L.), Malviya 206 and 234, varying in cuticular thickness and leaf area. Wheat cultivars were exposed to simulated rain acidified to pH 5.6 (control), 5.0, 4.5, 4.0 and 3.0 from 30 days of age, twice a week for five weeks. The plants received ambient precipitation of unknown acidity, as well as the acid rain treatments. Growth parameters such as shoot height, root length, and leaf area were reduced significantly in treated plants at different growth stages. Above and below-ground biomass also decreased significantly in the plants treated with acidic precipitation. Relative to control, the number of grains per plant and yield per m(2) declined significantly at all SAR treatments. The hypothesis that the variety with thinner cuticle and greater leaf area would be more susceptible to acidic precipitation was not supported by the present study.  相似文献   

5.
Seedlings of birch and Sitka spruce were grown on a range of British soils for 2 years and exposed to simulated acid rainfall treatments of pHs 5.6, 4.5, 3.5 and 2.5. Both species developed visible leaf injury patterns when exposed to the pH 2.5 treatment. In Sitka spruce this leaf injury was followed by high needle loss during the first winter and greater mortality. Generally, height growth of Sitka spruce was unaffected by treatments, but acid rainfall at pH 2.5 increased the height of birch. Mean height of both species was strongly affected by soil type. Significant soils x treatment effects on the heights of both species indicated that on some soils plant growth responses to the treatments did not fit the general pattern. Hence, while the results indicate that generally ambient acidities of rainfall in the UK are unlikely to adversely affect the growth of birch or Sitka spruce, plants growing on some soils may be susceptible to injury.  相似文献   

6.
An experiment was conducted to determine the extent to which rhizobia, mycorrhizal fungi, and anions in simulated rain affect plant growth response to acid deposition. Germinating subterranean clover seeds were planted in steam-pasteurized soil in pots and inoculated with Rhizobium leguminosarum, Glomus intraradices, Glomus etunicatum, R. leguminosarum + G. intraradices, R. leguminosarum + G. etunicatum, or no microbial symbionts. Beginning 3 weeks later, plants and the soil surface were exposed to simulated rain in a greenhouse on 3 days week(-1) for 12 weeks. Rain solutions were deionized water amended with background ions only (pH 5.0) or also adjusted to pH 3.0 with HNO3 only, H2SO4 only, or a 50/50 mixture of the two acids. Glomus intraradices colonized plant roots poorly, and G. intraradices-inoculated plants responded like nonmycorrhizal plants to rhizobia and rain treatments. Variation in plant biomass attributable to different rain formulations was strongest for G. etunicatum-inoculated plants, and the effect of rain formulation differed with respect to nodulation by rhizobia. The smallest plants at the end of the experiment were noninoculated plants exposed to rains (0.38 g mean dry weight total for 3 plants pot(-1)). Among nonnodulated plants infected by G. etunicatum, those exposed to HNO3 rain were largest, followed by plants exposed to HNO3 + H2SO4, pH 5.0, and H2SO4 rain, in that order. Among plants inoculated with both R. leguminosarum + G. etunicatum, however, the greatest biomass occurred with pH 5.0 rains, resulting in the largest plants in the study (1.00 g/3 plants). Treatment-related variation among root and shoot biomass data reflected those for whole-plant biomass. Based on quantification of biomass and N concentrations in shoot and root tissues, total N content of plants inoculated with G. etunicatum alone and exposed to the HNO3 + H2SO4 rains was approximately the same as plants inoculated with R. leguminosarum + G. entunicatum and exposed to pH 5 rains. Thus, the acid-mixture rains and rhizobia under no acid deposition provided approximately equal amounts of N in biomass. The significant interactions among rain formulation and the symbiotic status of the plants suggest that conclusions concerning the impact of acid deposition on plants in the environment cannot be considered reliable because most experiments on which such assessments are based have not tested confounding influences of microorganisms and precipitation characteristics.  相似文献   

7.
The seedlings of Pinus armandi Franch. were exposed to ozone (O(3)) at 300 ppb for 8 h a day, 6 days a week, and simulated acid rain of pH 3.0 or 2.3, 6 times a week, alone or in combination, for 14 weeks from 15 June to 20 September 1993. The control seedlings were exposed to charcoal-filtered air and simulated rain of pH 6.8 during the same period. Significant interactive effects of O(3) and simulated acid rain on whole plant net photosynthetic rate were observed, but not on other determined parameters. The exposure of the seedlings to O(3) caused the reductions in the dry weight growth, root dry weight relative to the whole plant dry weight, net photosynthetic rate, transpiration rate in light, water-use efficiency and root respiration activity, and increases in shoot/root ratio, and leaf dry weight relative to the whole plant dry weight without an appearance of acute visible foliar injury, but did not affect the dark respiration rate and transpiration rate in the darkness. The decreased net photosynthetic rate was considered to be the major cause for the growth reduction of the seedlings exposed to O(3). On the other hand, the exposure of the seedlings to simulated acid rain reduced the net photosynthetic rate per unit chlorophyll a + b content, but did not induce the significant change in other determined parameters.  相似文献   

8.
The effects of exposure to 40 nl litre(-1) SO2 + 40 nl litre(-1) NO2 on the reproductive biology of Polypodium interjectum (Shivas), Dryopteris affinis (Lowe) Fraser-Jenkins and Phyllitis scolopendrium (L.) Newman were investigated after 14 weeks exposure in a closed chamber fumigation system. The numbers of sori per pinna were reduced in response to SO2 and NO2 for D. affinis but were unaffected for the other species. Numbers of sporangia in sori and spore viability were reduced in P. interjectum and P. scolopendrium but not in D. affinis in response to the SO2 and NO2 treatment. Spore size was not affected by the pollution treatment. A separate experiment tested viabilities of spores collected from the three species in response to daily spraying with simulated mists at pHs of 2.5, 3.5, 4.5 and 5.6. For all three species, there was little or no spore germination in the pH 2.5 treatment and significantly reduced germination in response to the pH 3.5 as compared to the pH 4.5 and pH 5.6 treatments.  相似文献   

9.
To investigate the effects of low (0.05 micromol/mol) and relatively low (0.10 micromol/mol) concentrations of ozone on photoassimilate partitioning, rice plants grown in a water culture were fed with (13)C-labelled carbon dioxide at the reproductive stage in an assimilation chamber with constant concentration of (12)CO(2) and (13)CO(2). Rice plants were exposed to ozone 4 weeks before and 3 weeks after (13)CO(2) feeding. The dry weight of whole plants decreased with increasing ozone concentration, whereas net photosynthetic rate (apparent CO(2) uptake per unit leaf area) was unaffected, compared with the control, at the time of (13)CO(2) feeding. Dry matter distribution into leaf sheaths and culms was reduced more than that into leaf blades by ozone exposure. Although panicle dry weight per plant was reduced by ozone, the percentage of panicle dry weight to the whole plant tended to increase considerably. Exposure to ozone accelerated translocation of (13)C from source leaves to other plant parts. Partitioning of (13)C to panicles and roots was higher under ozone treatment than in the control. Respiratory losses of fixed (13)C from plants tended to decrease under treatment with ozone. The increase in photoassimilate partitioning in panicles can be considered to be an acclimation response of rice plants to complete reproductive stage under the restricted biomass production caused by ozone.  相似文献   

10.
Seedlings of Pinus ponderosa (ponderosa pine) and Abies concolor (white fir) were exposed to acidic fog (pH 2.0, 3.0 or 4.0) in open-field plots for six weeks. The two species exhibited dissimilar injury responses; neither current year nor previous year needles of ponderosa pine were injured by pH 2.0 fog, but current year needles exhibited higher membrane permeability responses (i.e. needle extract conductivity, K+ concentration). In comparison, both needle age classes in white fir were significantly injured by pH 2.0 fog, but no significant effects on membrane permeability were observed. For both species, whole-study average rates of net photosynthesis in previous year needles were lower in plants exposed to pH 2.0 fog than in plants treated with pH 4.0 fog. While decreased process rates coincided with leaf necrosis in white fir, stomatal closure appeared to be the mechanism of inhibition in ponderosa pine with pH 2.0 fog (i.e. no visible injury). The findings of the present study provide evidence that frequent applications of highly acidic fog (i.e. pH 2.0-3.0) can cause temporal alterations in membrane permeability and gas exchange rates in western conifer seedlings, in the presence or absence of visible injury. However, because incipient effects on other measures of foliage health were species-specific (i.e. concentrations of starch, photosynthetic pigments, inorganic nutrients), a general mechanism of phytotoxicity could not be identified.  相似文献   

11.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

12.
The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.  相似文献   

13.
Mature grafts of five Sitka spruce (Picea sitchensis (Bong.) Carr.) clones were exposed to simulated acid mist comprising an equimolar mixture of H(2)SO(4) and NH(4)NO(3) (1.6 and 0.01 mol m(-3)) at pH 2.5 and 5.0. Mist was applied to potted plants growing in open-top chambers on consecutive days, four times a week, at a precipitation equivalent of 1 mm per day. The total exposure to polluted mist was equivalent to three times that measured at an upland forest in SE Scotland. The aim of the experiment was to characterize the response of juvenile foliage produced by physiologically mature grafts (on seedling root stock) and compare it with the behaviour of juvenile foliage on seedlings. Development of visible foliar damage was followed through the growing season. Measurements of needle length, diameter, weight, surface area, surface was weight and wettability were made on current year needles to determine whether particular foliar characteristics increased susceptibility to injury. Significant amounts (> 10%) of visible needle damage was observed on only one of the five clones. Damage was most severe on the clone with the most horizontal branch and needle habit, but over the five clones there was no relationship between angle of branch display and damage. Likewise no combination of needle characteristics (length, width, area, amount of wax) was indicative of potential susceptibility. A comparison with previous acid misting experiments using seedlings suggests that juvenile foliage on physiologically mature trees is equally susceptible to visible injury as juvenile seedling foliage. Data of budburst differed among clones, and in this experiment exerted the over-riding influence on development of injury symptoms. Foliage exposed to a combination of strong acidity and high sulphate concentrations over the few weeks immediately following budburst suffered most visible injury. The absence of significant amounts of visible damage in UK forests probably reflects the general low susceptibility to visible injury of Sitka spruce exposed to acid mist.  相似文献   

14.
Spartina alterniflora plants were collected from salt marshes within New Jersey, South Carolina, and Georgia USA and shipped to The Pennsylvania State University. New plants were grown from rhizomes in six open-top field chambers. Three chambers received charcoal-filtered air, and three received charcoal-filtered air plus 80 ppb ozone, 8 h/day for 65 days. Flower, leaf, and shoot number per plant were recorded weekly. Photosynthetic rates were measured in week 5, and foliar injury was assessed during week 9. Final dry weight of roots, shoots, and rhizomes were determined. While ozone-treated plants from all states expressed symptoms of ozone injury, plants from South Carolina exhibited no effect of ozone on any other measured variable. Plants from the Georgia site showed ozone-induced reductions in all measured variables except leaf dry weight. Ozone-treated plants from New Jersey showed reductions in photosynthetic rate, leaf and shoot number, and root dry weights. Only plants from New Jersey produced flowers, with ozone treatment causing delay in flowering and reduction in the number of flower spikes produced.  相似文献   

15.
Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain or dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. When the laboratory by trial effect was removed (influence of different growth. conditions), lack of fit to the Mitscherlich function was insignificant. Thus, a single mathematical model satisfactorily characterized the relationship between acidity and mean plant response. The pH value associated with a 10 percent reduction in mass was 3.3 ± 0.3 for hypocotyls. No value was estimated for shoots because effects oh shoots were not significant. The results of this study demonstrate that a generalized exposure-response model can be developed in the presence of large variations in environmental conditions when plant culture and exposure to simulated rain are standardized among laboratories.  相似文献   

16.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

17.
The relationship between pollutant-induced leaf drop or reductions in foliar pigment concentrations and yield was determined for field-grown alfalfa (Medicago sativa L. 'Moapa') exposed to simulated fogs of pH 7.24, 2.69 and 1.68 singly, and in combination with ambient ozone (O3) over an 11-week period. Highly acidic fog (pH 1.68) or ambient O3 significantly reduced totalseason dry yield and foliar pigment concentrations, and increased leaf drop. Significant interactive effects between acidic fog and O3 were observed for the leaf parameters, but not for yield. Thus, multiple exposures to acidic fog at current ambient levels of acidity (i.e. pH 2.69) could effect leaf quality in the absence of significant effects on yield. Alternatively, O3-induced effects on leaves may have utility as bioindicators of potential yield losses.  相似文献   

18.
Acid sulfate aerosol (500 μg/m3) had no effect on soybean or pinto bean after a single 4-h exposure. However, visible Injury and chlorophyll loss occurred when plants were sequentially exposed to acid aerosol and ozone (380 μg/m3) for 4 h. In yellow poplar seedlings exposed to ozone (200 μg/m3), sulfur dioxide (210 μg/m3) and simulated rain solutions (pH 5.6, 4.3 and 3.0) for 6 weeks, root dry weight, leaf area increase, mean relative growth rate and unit leaf rate decreased linearly with pH in ozone-treated plants. However, unit leaf rate and mean relative growth rate increased linearly in response to sulfur dioxide as solution acidity increased. Ambient wet and dry sulfate concentrations appear insufficient to directly impact vegetation.  相似文献   

19.
Four-week-old paper birch (Betula papyrifera Marsh.) seedlings, inoculated or non-inoculated with the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch and grown in steamed or non-steamed soil, were exposed to ozone (O(3)) and/or simulated acid rain (SAR). Plants were exposed to O(3) for 7 h per day on 5 days per week for 12 weeks. O(3) concentrations were maintained between 0.06 and 0.08 ppm. SAR was applied 10 min per day on 2 days per week. O(3), SAR, soil regime and mycorrhizal treatment did not significantly affect any of the measured variables. Interactions between O(3) and SAR, SAR and mycorrhizal treatment, soil regime and mycorrhizal treatment and ozone and soil regime had significant effects. Treatment of seedlings with pH 3.5 SAR caused increases in growth which were more apparent in birch exposed to O(3). Mucorrhizal treatment caused increased growth in non-steamed soil, while growth appeared to decrease in steamed soil. Birch seedlings grew much better in steamed soil. The implications of increased growth in steamed soil may demonstrate the importance of looking at the secondary effects of pollutants on soil-borne organisms.  相似文献   

20.
To clarify the response of growth and root functions to low concentrations of ozone (O(3)), rice plants (Oryza sativa L.) were exposed to O(3) at 0.0 (control), 0.05 and 0.10 ppm for 8 weeks from vegetative to early heading stages. Exposure to 0.05 ppm O(3) tended to slightly stimulate the dry weight of whole plants up to 5 weeks and then slightly decrease the dry weight of whole plants. However, these effects were statistically significant only at 6 weeks. Exposure to 0.10 ppm O(3) reduced the dry weight of whole plants by 50% at 5 and 6 weeks, and thereafter the reduction of the dry weight of whole plants was gradually alleviated. Those changes in dry weight can be accounted for by a decrease or increase in the relative growth rate (RGR). The changes in the RGR caused by 0.05 and 0.10 ppm O(3) could be mainly attributed to the effect of O(3) on the net assimilation rate. Root/shoot ratio was lowered by both 0.05 and 0.10 ppm O(3) throughout the exposure period. The root/shoot ratio which had severely decreased at 0.10 ppm O(3) in the first half period of exposure (1-4 weeks) became close to the control in the latter part of exposure (5-8 weeks). Time-course changes in NH(4)-N root uptake rate were similar to those in the root/shoot ratio especially for 0.10 ppm O(3). On the other hand, root respiration increased from the middle to later periods. Since it is to be supposed that plants grown under stressed conditions change the ratio of plant organ weight to achieve balance between the proportion of shoots to roots in the plant and their activity for maintaining plant growth, these changes in root/shoot ratio and nitrogen uptake rate under long-term exposure can be considered to be an adaptive response to maintain rice growth under O(3) stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号