首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of eight trace metals (TMs) in road dust (RD) (particles?<?25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg?1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As?>?Pb?>?Cr?>?Mn?>?Cd?>?Zn?>?Ni?>?Cu for both children and adults.  相似文献   

2.
The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg?1, with an average of 115.9 mg kg?1, which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.  相似文献   

3.
Mercury as a toxic element and its associated health hazard has been an important topic of research for urban pollution for many years. In this paper, the spatial distribution, pollution assessment, and health risk associated with Hg in roadside dust 96 street dust samples, representing differing land-uses, have been investigated. Land-uses included residential areas (RA), industrial areas (IA), public gardens (PG), roadside areas (RS), and suburban areas (SA) in the city of Ahvaz, Iran were investigated. Compared with other cities, the concentration of Hg in Ahvaz was considerably higher with a mean value of 2.53 mg kg?1, ranging from 0.02 to 8.75 mg kg?1. Residential areas exhibited higher Hg in street dust than other areas, as demonstrated by spatial mapping illustrating hot spots associated with old urban areas with high residential density, high volume traffic of roadside areas, and industrial districts: including oil-drilling activities, steel smelting-related industries, and small industrial towns around Ahvaz. However, Hg concentrations in street dust near to the public gardens (PG) and suburban areas (SA) were not at elevated levels compared other land-uses investigated in this study. A health risk assessment model of non-carcinogenic effects was evaluated for both children and adults. The HQ values also revealed that the main exposures route for children and adults decreased as follows: vapour > ingestion > dermal contact > inhalation. The hazard index (HI) in each area is less than the safe level (HI ≤ 1) for children and adults, but higher for children. The HI value decreases as the following order: RS > IA > RA > SA > PG, which indicates potentially serious health hazards for children in the study areas.  相似文献   

4.
Concentrations of potentially toxic elements (PTEs As, Ba, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, Zn and Mo) in smaller than 100-μm street dust particles from Xining, a typical valley-city in northwestern China, were determined using X-ray fluorescence spectrometry, and their potential risks to local ecosystem and human health were assessed using potential ecological risk index and health risk model. The results indicate that the concentration of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, Zn and Mo in the smaller than 100-μm street dust particles from Xining ranges from 0.8 to 11.1, 339.4 to 767.7, 27.2 to 110.2, 185.7 to 5134.5, 15.1 to 115.2, 150.1 to 623.5, 16.8 to 74.1, 24.4 to 233.0, 169.9 to 475.7, 47.4 to 96.8, 33.1 to 231.1 and 0.2 to 4.3 mg kg?1, with an arithmetic mean of 3.6, 415.6, 50.1, 573.0, 40.6, 409.1, 22.6, 52.7, 257.8, 57.1, 108.6 and 2.5 mg kg?1, respectively. Compared to the background value of local soil, the smaller than 100-μm street dust particles from Xining have elevated concentrations of Co, Cr, Cu, Pb, Zn, Sr and Mo. The contamination levels of Ba, Co, Cr, Cu, Pb, Zn, Sr and Mo are higher than As, Mn, Ni and V. The comprehensive potential ecological risk levels of PTEs were moderate to considerable. The non-carcinogenic risks of PTEs studied on children and adults due to dust exposure are limited except for Cr to children. Cr in the dust may pose a potential health risk to children; this should draw more attention.  相似文献   

5.
Yu  Bo  Lu  Xinwei  Fan  Xinyao  Fan  Peng  Zuo  Ling  Yang  Yufan  Wang  Lingqing 《Environmental geochemistry and health》2022,44(10):3541-3554
Environmental Geochemistry and Health - The spatial distribution, pollution level, and exposure risk of Pb in the finer dust (particle size?&lt;?63&nbsp;μm) of residential...  相似文献   

6.
Phthalic acid esters (PAEs) are widely used as plasticizers and in consumer products, which may enter the environment and present risks to human health. U.S. EPA classifies six PAEs as priority pollutants, which could be accumulated in street dust at the interface of atmosphere, biosphere and geosphere. This study collected a total of 58 street dust samples from Xi’an City in Northwest China and analyzed for concentrations of the priority PAEs. Composition, distribution, sources and health risk of the PAEs were further examined. All the priority PAEs were detected in the street dust. The concentrations of individual PAEs varied between not detected and 183.19 mg/kg. The sum of the 6 priority PAEs (∑6PAEs) ranged from 0.87 to 250.30 mg/kg with a mean of 40.48 mg/kg. The most abundant PAEs in the street dust were di-n-butyl phthalate and di (2-ethylhexyl) phthalate (DEHP). Higher concentrations of ∑6PAEs in the street dust were found in the south and west parts of Xi’an City as well as its urban center, which were possibly attributed to the prevailing northerly Asian winter monsoon. The PAEs in the street dust originated mainly from wide application of plasticizers as well as cosmetics and personal care products. The main pathways of human exposure to PAEs in the street dust were ingestion and dermal adsorption of dust particles. The non-cancer risk of human exposure to PAEs in the street dust was relatively low, while the risk to children was higher than that to adults. The cancer risk of human exposure to DEHP in the street dust was lower than the standard limit value of 10?6.  相似文献   

7.
When the hazard quotient for ingestion (HQI) of a trace element in soil and dust particles is adjusted for the element’s bioaccessibility, the HQI is typically reduced as compared to its calculation using pseudo-total element concentration. However, those studies have mostly used bulk particles (<2 mm or <250 µm), and the reduction in HQI when expressed as bioaccessible metal may not be similar among particle size fractions, the possibility probed by the present study of street dusts and soils collected in Tehran. The highest Cu, Pb and Zn near-total concentrations occurred in the finest particles of dusts and soils. Bioaccessible concentrations of Cu, Pb and Zn in the particles (mg kg?1) were obtained using simple bioaccessibility extraction test (SBET). The bioaccessibility (%) did not vary much among near-total concentrations. In the bulk (<250 µm) sample, the bioaccessible concentration of Cu and Pb increased as the pH of sample increased, while Zn bioaccessibility (%) in the bulk particles was influenced by organic matter and cation exchange capacity. X-ray diffraction identified sulfide and sulfate minerals in all of the size-fractionated particles, which are insoluble to slightly soluble in acidic conditions and included most of the Cu and Pb in the samples. The only Zn-bearing mineral identified was hemimorphite, which would be highly soluble in the SBET conditions. The calculated HQI suggested potential non-carcinogenic health risk to children and adults from ingestions of soils and dusts regardless of particle size consideration, in the order of Zn > Pb ≥ Cu. The HQI calculated from near-total metal was not much different for particle size classes relative to bulk particles; however, the bioaccessibility percent-adjusted HQI for Pb was higher for the smaller particles than the bulk. This work is novel in its approach to compare HQI for a bulk sample of particles with its composite particle size fractions.  相似文献   

8.
Lindane (??-hexachlorocyclohexane, ??-HCH) is a recalcitrant and toxic organochlorine insecticide. Due to its non-selective production process and widespread use, HCH isomers and their degradation products have been detected frequently in soils and groundwater. An innovative technology using microbial produced Pd(0) nanoparticles, i.e. bio-Pd, was developed to treat groundwater containing a mixture of HCHs and chlorobenzenes. In a first step, the groundwater was de-ironized and most of the chlorobenzenes were removed in a biological trickling filter. The ??g?L?1 levels of HCHs and chlorobenzenes were removed in a second step by the bio-Pd-based technology. Therefore, a 200-L pilot scale reactor was developed with 100?mg?L?1 bio-Pd encapsulated in alginate beads. Hydrogen gas was bubbled at the bottom of the reactor and served to charge the bio-Pd catalyst. The reactor influent contained 5.2???g?L?1 HCHs and 51.1???g?L?1 chlorobenzenes. During a test period of 10?days, 29% of the HCH isomers and 63% of the chlorobenzenes were removed applying a nominal hydraulic residence time of 4?h. These removal percentages could be increased to 75 and 68% by doubling the nominal hydraulic residence time to 8?h. This study demonstrated that biologically produced nanoparticles of Pd can be applied for the large-scale remediation of groundwater contaminated with HCHs.  相似文献   

9.

This study investigated the content, distribution, and contamination levels of toxic metals (Cd, Cr, Cu, Pb, and Zn) in street dust in Lanzhou, an industrial city in Northwest China. Meanwhile, the risk these metals posed to the urban ecosystem and human health was also evaluated using the potential ecological risk index and human exposure model. Results showed that concentrations of these metals in the dust are higher than the background value of local soil, with Cu having the highest levels. The districts of Anning and Xigu had the most extreme levels of contamination, while Chengguan and Qilihe districts were lightly contaminated, which can be partly attributed to human activities and traffic densities. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Lanzhou were generally at moderate or low levels. Heavy metal concentration increased with decreasing dust particle size. The pollution indices of Cr, Cd, Cu, Pb, and Zn were in the range of 0.289–2.09, 0.332–2.15, 1.38–6.21, 0.358–2.59, and 0.560–1.83 with a mean of 1.37, 1.49, 3.18, 1.48, and 0.897, respectively. The geo-accumulation index (I geo) suggested that Zn in street dust was of geologic origin, while Cd, Cr, Pb, and Cu were significantly impacted by anthropogenic sources. The comprehensive pollution index showed that urban dust poses a high potential ecological risk in Lanzhou. Non-carcinogenic and carcinogenic effects due to exposure to urban street dust were assessed for both children and adults. For non-carcinogenic effects, ingestion appeared to be the main route of exposure to dust particles and thus posed a higher health risk to both children and adults for all metals, followed by dermal contact. Hazard index values for all studied metals were lower than the safe level of 1, and Cr exhibited the highest risk value (0.249) for children, suggesting that the overall risk from exposure to multiple metals in dust is low. The carcinogenic risk for Cd and Cr was all below the acceptable level (< 10−6).

  相似文献   

10.
For the application of our method for the sequential extraction of heavy metals from microsamples presented in part 1 (“Sequentielle Schwermetallextraktion von Mikroproben” — “Sequential Extraction of Heavy Metals from Micro Samples”) an investigation was carried out to evaluate airborne dust fallout and street sediments at two urban sites where different heavy metal immission rates occur due to traffic influence. In the street sediments the total concentrations of zinc, copper and lead was three to fivefold higher in the silt and clay fraction (< 63 μm) than in the particle size fraction (< 1,12 mm), but showed nearly the same mobilisation behaviour. The dust samples showed equal mobilisation behaviour as the street sediments for copper and lead, while zinc was considerably more mobile in the dust samples: In extraction steps I–IV (I: mobile fraction; II: easily deliverable fraction; III: fraction bound to manganese oxides; IV: fraction bound organic to matter) zinc, copper and lead in street sediments, as well as copper and lead in dust samples, were dissolved to 40–70%, whereas about 80% of zinc in the dust samples was already dissolved in extraction step I.  相似文献   

11.
长江三角洲河网地区典型城镇街尘中多环芳烃的污染特征   总被引:6,自引:2,他引:4  
街尘是一种重要的环境介质,其携带的污染物在城镇化过程中对河网地区的水环境构成了一定的威胁.为初步探讨长江三角洲河网地区典型街尘中多环芳烃(PAHs)的污染特征,以杭嘉湖平原河网地区饮用水水源河流上游典型小城镇的街尘为研究对象,对工业区、交通干道、旧居区、新居区和商业区5种土地利用类型的15个采样点进行街尘样品采集和粒径分级,测试街尘的密度、有机质含量以及16种U.S.EPA优控PAHs含量等指标.结果表明,粒径为<63、63~125、125~250和250~900μm街尘中总多环芳烃(∑PAHs)的平均含量分别为7261、5835、4660和2909μg·kg-1,粒径越小,PAHs含量越高,其生态风险越大.不同土地利用类型的街尘中PAHs的含量顺序依次为:工业区>交通干道>旧居区>新居区>商业区.街尘中PAHs和有机质含量存在显著正相关关系,且街尘粒径越小,有机质和PAHs的相关性越强.源解析结果表明,街尘中的PAHs多为燃烧源.  相似文献   

12.
This research investigates the adsorption mechanisms of fluoride (F) on four clay minerals (kaolinite, montmorillonite, chlorite, and illite) under different F? concentrations and reaction times by probing their fluoride superficial layer binding energies and element compositions using X-ray photoelectron spectroscopy (XPS). At high F? concentrations (C 0 = 5?C1000 mg·L?1), the amount of F? adsorbed (Q F), amount of hydroxide released by clay minerals, solution F? concentration, and the pH increase with increasing C 0. The increases are remarkable at C 0>50 mg·L?1. The QF increases significantly by continuously modifying the pH level. At C 0<5?C100 mg·L?1, clay minerals adsorb H+ to protonate aluminum-bound surface-active hydroxyl sites in the superficial layers and induce F? binding. As the C 0 increases, F?, along with other cations, is adsorbed to form a quasi-cryolite structure. At C 0>100 mg·L?1, new minerals precipitate and the product depends on the critical Al3+ concentration. At [Al3+]>10?11.94 mol·L?1, cryolite forms, while at [Al3+]<10?11.94 mol·L?1, AlF3 is formed. At low C 0 (0.3?C1.5 mg·L?1), proton transfer occurs, and the F? adsorption capabilities of the clay minerals increase with time.  相似文献   

13.
Jharia (India) a coal mining town has been affected by the consequences of mining and associated activities. Samples of outdoor fallen dust were collected at different locations of Jharia covering four different zones: commercial, petrol pump, high traffic, and residential areas. The dust samples were analysed for different trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, and Zn). The highest concentration of the elements in the dust samples are Mn (658 mg/kg), Zn (163.6 mg/kg), Cr (75.4 mg/kg), Pb (67.8 mg/kg), Ni (66 mg/kg), Cu (56.8 mg/kg), Co (16.9 mg/kg), As (4.1 mg/kg), and Cd (0.78 mg/kg). The concentration of selenium was below detection limit. Except Cd, contents of all the other elements in the dust samples were significantly lower in the residential area. High amount of Ni (145 mg/kg) and Pb (102 mg/kg) was observed in the high traffic and petrol pump areas, respectively. The exposure risk assessment strategies are helpful in predicting the potential health risk of the trace elements in the street dust. Selected receptors for risk assessment were infants, toddlers, children, teens, and adults. The calculated hazard quotient (HQ) for lifetime exposure was <1.0 for all the elements studied, indicating no risks from these elements for adults Among the receptors, toddlers were found to be more vulnerable, with HQ for Co, Cr, and Pb > 0.1. The finding predicts potential health risk to toddlers and children.  相似文献   

14.
This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between?<?0.01–2.54, 1.30–27.41 and?<?0.01–62.8 µg kg?1, respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ?<?1.0) and the acceptable distribution range of ILCR (10?6–10?4). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.  相似文献   

15.
This study investigated the source and contamination levels of toxic elements (Cd, Cr, As, Pb, Ni and Hg) present in a coastal environment, Paradip—an industrial hub of the east coast of India. The ecological risk assessment indices and human exposure models were used to evaluate the pollution status. Enrichment factor indicated that all the metal(loid)s found in the sediment are mostly derived from the anthropogenic source. According to the sediment quality quotient, 8.33% of sediments have crossed the ERM limit for Ni that can be fatal to biota. Meanwhile, 66.66, 41.66 and 8.33% of sediments have exceeded PEL range for Cr, Ni and As, respectively, that can register frequent lethal toxicity to benthic biota. As had the highest potential ecological harm coefficient (Erf?>?80), and Hg had moderate ecological harm coefficient (40?<?Erf?<?80). Summarily, the sediment quality of this site is moderate to heavily toxic to benthic organisms. The concentration of toxic metals in seawater was below the permissible limit (CCC and CMC) set by USEPA indicating that water is relatively safer for free floating aquatic biota. The health risk index of toxic metal (loid)s present in soils of the residential sites has confirmed that there is a severe non-carcinogenic threat for children (HI child?>?1) and a borderline carcinogenic risk for both adult and children. THQCr possesses highest non-carcinogenic threat, which contributed approximately 50% to HI followed by THQAs. The contribution of carcinogenic risk of chromium (CRCr) to TCR is approximately 60%. Cr is the significant contaminant of this site that has highest health effects. Highest exposure risks were associated with ingestion pathway accounting for about 85% of the total for most of the elements.  相似文献   

16.
Experiments have been carried out to study the sorption of Benzo(a)pyrene(Bap) on sediment particles from the Yellow River using a batch equilibration technique. Effects of particle size on the adsorption and partition of Bap were investigated with the particle content of 3 g/L. Several significant results were obtained from the study. (1) Isotherms of Bap could be fitted with the dual adsorption-partition model under different particle sizes, and the measured value of the adsorption and partition was in agreement with the theoretical value of the dual adsorption-partition model. (2) When the particle diameter was d ? 0.025 mm, the adsorption was predominant in the sorption of Bap, which accounted for 68.7%–82.4% of the sorption. For the particles with the size of 0.007 mm?d<0.025 mm, the adsorption was predominant when the equilibrium concentration of Bap was 0–8.87 μg/L in the water phase; and the partition was predominant when the equilibrium concentration of Bap was higher than 8.87 μg/L in the water phase. When the particle diameter was d<0.007 mm, the partition was predominant. (3) On the point of particle size, the contribution of adsorption to sorption followed the order: “d?0.025 mm”>“0.007 mm ?d<0.025 mm” >“d<0.007 mm”. (4) The partition coefficients of Bap in solids with different particle sizes were linearly correlated with the organic content, and the K oc of Bap was about 1.26 × 105 (L/kg).  相似文献   

17.
The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average?≈?8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO2/Al2O3 and Na2O/(Al2O3?+?SiO2) ratios and low plastic index (i.e. PI?≈?2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase?>?muscovite?>?hornblende?>?calcite?>?haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.  相似文献   

18.
This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal–Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.  相似文献   

19.
This study is concerned with the elemental composition of soils and street dust collected in an historical industrial city of approximately 27 000 inhabitants, where old Hg mining and metallurgical activities strongly affected the load of heavy metals in the urban environment. For the purpose of the study, representative samples of soils and street dust were collected at different locations in the whole urban area (3 km2). Elevated mean concentrations of As in soils and street dust (69 and 135 g g–1, respectively), and Hg (3.07 and 4.24 g g–1, respectively), compared to background levels and to those found in other cities, reflect the anomalous geochemical nature of these materials and the strong influence exerted by the old mining sites.  相似文献   

20.
This article reports the first application of coupled total organic carbon cavity ring-down spectroscopy (TOC-CRDS) for the analysis of the ??13C signature of dissolved organic carbon (DOC) in freshwater samples. DOC represents a major, dynamic component of the global carbon cycle. The export of DOC from soils into rivers and groundwaters may be highly climate sensitive, and much of this export may occur in ephemeral fluxes. Thus, a robust, simple and inexpensive method for the continuous determination of DOC concentration and quality is urgently needed. We detail recent advances made in the analysis of the ??13C signature of DOC using a TOC-CRDS system optimised for the analysis of DOC with natural abundances greater than 2.5?mg?L?1 with no sample pre-concentration required and sample volumes of 40?mL. Precision between replicated samples was comparable to conventional analysis by gas-source isotope ratio mass spectrometry, yielding ??13C values with standard deviations of?±?0.5??? for DOC concentrations higher than 1.5?mg?L?1. The utility of this technique for the analysis of DOC in samples with a broad range of compositions and concentrations (2.5?C25?mg?L?1 DOC) is demonstrated. Since DOC ??13C can be measured continuously, ca. 45?min per measurement, this method enables the online monitoring of DOC in river water, water intakes and treated waters, allowing changes in DOC fluxes to be monitored in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号