首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 60 毫秒
1.
Coastal marine sediment samples were collected from ten sampling stations along the Egyptian Mediterranean coast in April 2010. All sediment samples were analyzed for aliphatic (C7 to C34) and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total aliphatic hydrocarbons ranged from 1621.82 to 9069.99 ng/g (dry weight), while aromatic hydrocarbons (16 PAHs) varied between 208.69 and 1020.02 ng/g with an average of 530.68?±?225.86 ng/g?dwt. Good correlations observed between certain PAH concentrations allowed to identify its origin. The average TOC percent was varied from 0.13 to 1.46 %. Principal component analysis was used to determine the sources of hydrocarbon pollutants in sediments of Mediterranean. Additionally, special PAHs compound ratios suggest the petrogenic origins.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.  相似文献   

3.
Total suspended particle samples and gas phase samples were collected at three representative sampling sites in the southeastern suburb of Beijing from March 2005 to January 2006. The samples were analyzed for 16 US EPA priority PAHs using GC/MS. Concentrations of Sigma PAHs in particle and gas phases were 0.21-1.18 x 10(3) ng m(-3) and 9.5 x 10(2) ng-1.03 x 10(5) ng m(-3), respectively. PAH concentrations displayed seasonal variation in the order of winter>spring>autumn>summer for particle phase, and winter>autumn>summer>spring for gas phase. Partial correlation analysis indicates that PAH concentrations in particle phase are negatively correlated with temperature and positively correlated with air pollution index of SO(2). No significant correlation is observed between gas phase PAHs and the auxiliary parameters. Sources of PAH are identified through principal component analysis, and source contributions are estimated through multiple linear regression. Major sources of atmospheric PAHs in the study area include coal combustion, coke industry, vehicular emission and natural gas combustion.  相似文献   

4.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) in 24 surface sediments from the Dahuofang Reservoir (DHF), the largest man-made lake in Northeast China, were measured. The results showed that the concentrations of 16 US EPA priority PAHs in the sediments ranged from 323 to 912 ng/g dry weight with a mean concentration of 592?±?139 ng/g. The PAH source contributions were estimated based on positive matrix factorization model. The coal combustion contributed to 31 % of the measured PAHs, followed by residential emissions (22 %), biomass burning (21 %), and traffic-related emissions (10 %). Pyrogenic sources contributed ~84 % of anthropogenic PAHs to the sediments, indicating that energy consumption release was a predominant contribution of PAH pollution in DHF. Compared with the results from the urban atmospheric PAHs in the region, there was a low contribution from traffic-related emissions in the sediments possibly due to the low mobility of the traffic-related derived 5+6-ring PAHs and their rapid deposition close to the urban area.  相似文献   

6.
One hundred and fourteen surface sediments were collected from the Maozhou River Watershed in Shenzhen, China from December 2009 to January 2010. Three individual chlorinated polycyclic aromatic hydrocarbons (ClPAHs), six individual brominated polycyclic aromatic hydrocarbons (BrPAHs), and five corresponding parent polycyclic aromatic hydrocarbons (PAHs) were determined. The concentration of 9-chlorophenanthrene was the highest ranging from 0.51-289 ng g(-1) (average, 16.5 ng g(-1)). For BrPAHs, the concentration of 2-bromofluorene was the highest ranging from 0.31-266 ng g(-1) (average, 35.3 ng g(-1)). No correlation was observed between the concentrations of ClPAHs and parent PAHs in surface sediments. In addition, there was no correlation between 1-bromopyrene, 7-bromobenz(a)anthracene and 9,10-dibromoanthracene, and corresponding parent PAHs. However, a significant correlation was found between 9-bromophenanthrene and phenanthrene (p < 0.01), between 9-bromoanthracene and anthracene (p < 0.05), and between 2-bromofluorene and fluorene (p < 0.05). Six fly ash samples collected from one of the municipal domestic waste incineration plants in Shenzhen were also analyzed for source identification. The concentration of 7-bromobenz(a)anthracene was the highest, ranging from 3.21-4.08 ng g(-1). In addition, 2-bromofluorene was not detected in all the fly ash samples. No correlation was found between the concentrations of Cl-/BrPAHs and corresponding parent PAHs in fly ashes. We also examined the relationship between the levels of Cl-/BrPAHs in surface sediments and the urbanization process. Our results suggested the levels of individual Cl-/BrPAHs congeners presented a similar increasing trend with the increasing urbanization level.  相似文献   

7.
8.
The levels and possible sources of 16 priority polycyclic aromatic carbons (PAHs) in the sediments from the Yellow River Delta (YRD) were investigated. The total PAH concentrations ranged from 23.9 to 520.6 microg kg(-1) with a mean value of 150.9 microg kg(-1), indicating low or medium levels compared with reported values of other deltas. The concentrations of the 16 individual PAHs presented varied profiles among different regions. The ecological risk assessment of PAHs showed that adverse effects would rarely occur in the sediments of the YRD based on the effect range-low quotients and the probability risk assessment. The PAH compositions and the principal component analysis (PCA) with multiple linear regression (MLR) uniformly presumed the mixed sources of pyrogenic- and petrogenic-deriving PAHs in the YRD. By PCA with MLR, the contributions of major sources were quantified as 36.4% from oil burning, 33.1% from biomass combustion, and 30.5% from diesel emission sources.  相似文献   

9.
To estimate the severity of polycyclic aromatic hydrocarbon (PAH) contamination in the upper sediment of the Beijiang River, 42 sediment samples were analyzed for the presence of 16 key PAHs using gas chromatography–mass spectrometry. The concentrations of PAH in the sediment ranged from 44 to 8,921 ng g?1 dry weight. The four- to six-ring PAHs, contributing >50 % to PAHs in 34 of the 42 sites, were the dominant species. Based on a principal component analysis, combined with multivariate linear regression, it became clear that the most important contributors of PAH were fossil fuel combustion (48 %), diesel emissions plus oil spillage (33 %), and coke combustion (19 %). The surface sediments of Beijiang River were grossly contaminated by PAHs mainly derived from combustion.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号