首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

2.
Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design. Further investigations of invertebrate sensitivity to sedimentation may benefit from assessments of sedimentation impacts at different spatial scales, determining compromised physical habitat integrity of specific taxa and developing alternative streambed measures for quantifying sedimentation.  相似文献   

3.
A procedure to select the most relevant metrics for assessing the ecological condition of the Douro basin (north Portugal) was developed based upon a set of 184 benthic community metrics. They were grouped into 16 biological categories selected from literature using data collected over 2 years from 54 sites along 31 rivers covering the whole perceived range of human disturbance. Multivariate analyses were carried out to identify the main trends in the macroinvertebrate data, to select reference versus impaired sites, to avoid multicolinearity between metrics, and to identify those that were clearly independent from natural stream typology. Structural metrics, adaptation metrics, and tolerance measures most effectively responded across a range of human influence. We find these attributes to be ecologically sound for monitoring Portugal’s lotic ecosystems and providing information relevant to the Water Framework Directive, which asserts that the definition of water quality depends on its “ecological status”, independent of the actual or potential uses of those waters.  相似文献   

4.
The Mid-Atlantic Highlands Assessment (MAHA) included the sampling of macroinvertebrates from 424 wadeable stream sites to determine status and trends, biological conditions, and water quality in first through third order streams in the Mid-Atlantic Highlands Region (MAHR) of the United States in 1993–1995. We identified reference and impaired sites using water chemistry and habitat criteria and evaluated a set of candidate macroinvertebrate metrics using a stepwise process. This process examined several metric characteristics, including ability of metrics to discriminate reference and impaired sites, relative scope of impairment, correlations with chemical and habitat indicators of stream disturbance, redundancy with other metrics, and within-year variability. Metrics that performed well were compared with metrics currently being used by three states in the region: Pennsylvania, Virginia, and West Virginia. Some of the metrics used by these states did not perform well when evaluated using regional data, while other metrics used by all three states in some form, specifically number of taxa, number of EPT taxa, and Hilsenhoff Biotic Index, performed well overall. Reasons for discrepancies between state and regional evaluations of metrics are explored. We also provide a set of metrics that, when used in combination, may provide a useful assessment of stream conditions in the MAHR.  相似文献   

5.
Community, diversity, and biological index metrics for chironomid surface-floating pupal exuviae (SFPE) were assessed at different subsample sizes and sampling frequencies from wadeable streams in Minnesota (USA). Timed collections of SFPE were made using a biweekly sampling interval in groundwater-dominated (GWD) and surface-water-dominated (SWD) streams. These two types of stream were sampled because they support different Chironomidae communities with different phenologies which could necessitate sampling methodologies specific to each stream type. A subsample size of 300 individuals was sufficient to collect on average 85% of total taxa richness and to estimate most metrics with an error of about 1% relative to 1,000 count samples. SWD streams required larger subsample sizes to achieve similar estimates of taxa richness and metric error compared to GWD streams, but these differences were not large enough to recommend different subsampling methods for these stream types. Analysis of sample timing determined that 97% of emergence occurred from April through September. We recommend in studies where estimation of winter emergence is not important that sampling be limited to this period. Sampling frequency also affected the proportion of the community collected. To maximize the portion of the community, collected samples should be taken across seasons although no specific sampling interval is recommended. Subsampling and sampling frequency was also assessed simultaneously. When using a 300-count subsample, a 4-week sampling interval from April through September was required to collect on average 71% of the community. Due to differences in elements of the chironomid community evaluated by different studies (e.g., biological condition, phenology, and taxonomic composition), richness estimates are documented for five sampling intervals (2, 4, 6, 8, 10, and 12 weeks) and five subsample sizes (100, 200, 300, 500, and 1,000 counts). This research will enhance future studies by providing guidelines for tailoring SFPE methods to study specific goals and resources.  相似文献   

6.
The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin’s land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1–4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated “modified-random” site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin’s Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.  相似文献   

7.
Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodiversity and habitat. We assessed the ecological condition of streams in a southeastern Brazilian basin. We quantified the percentage of stream length in good, fair, and poor ecological condition according to benthic macroinvertebrate assemblage. We assessed the risk of finding degraded ecological condition associated with degraded aquatic riparian physical habitat condition, watershed condition, and water quality. We describe field sampling and implementation issues encountered in our survey and discuss design options to remedy them. Survey sample sites were selected using a spatially balanced, stratified random design, which enabled us to put confidence bounds on the ecological condition estimates derived from the stream survey. The benthic condition index indicated that 62 % of stream length in the basin was in poor ecological condition, and 13 % of stream length was in fair condition. The risk of finding degraded biological condition when the riparian vegetation and forests in upstream catchments were degraded was 2.5 and 4 times higher, compared to streams rated as good for the same stressors. We demonstrated that the GRTS statistical sampling method can be used routinely in Brazilian rain forests and other South American regions with similar conditions. This survey establishes an initial baseline for monitoring the condition and trends of streams in the region.  相似文献   

8.
We used methods from EPA's Environmental Monitoring and Assessment Program (EMAP) to assess the regional status of streams within the Coast Range ecoregion of Washington State. Study objectives were: to determine the ecological condition of wadable, 1st-order through 3rd-order streams; to provide information for the development of water quality biological criteria; and to determine the applicability of EMAP-derived methods in Washington. Stream condition was assessed using EMAP indicators for habitat (chemical and physical) and biology (invertebrate and vertebrate assemblages). EMAP's probability survey was used to select 75 1st through 3rd-order stream sites from the USGS 1:100,000 series hydrographic layer. Of these, 45 sites were sampled. Multivariate techniques were used to identify community types and related physical and chemical habitat. Overall, about 25% of the sites were rated least-impacted. Most impacts were associated with non-point source pollution, mainly forestry practices. The R-EMAP method was a successful tool for assessment of regional status and ecological integrity; however, in order to use it for biological criteria development in Washington State, the method would require some modification to complement the current state protocols.  相似文献   

9.
As a step towards determining the extent of degradation in non-tidal streams, a multi-metric Index of Biotic Integrity (IBI) based on fish assemblages was developed for the Maryland Biological Stream Survey (MBSS). The MBSS is a probability-based statewide sampling program designed to assess the status of biological resources and to evaluate the effects of anthropogenic activities. We used data from 419 MBSS sites sampled in 1994-95 to develop the IBI. Two distinct geographic strata, corresponding with ecoregional and physiographic boundaries, were identified via cluster analysis and multivariate analysis of variance (MANOVA) as supporting distinctly different species groups. Reference conditions were based on minimally degraded sites. We quantitatively evaluated the ability of various attributes of the fish assemblage (candidate metrics) to discriminate between these reference sites and sites known to be degraded, using statistical tests and classification efficiency. Provisional formulations of the IBI were selected for each region based on high classification efficiency and broad representation of fish assemblage attributes. Fish IBI scores for 1995 MBSS sites spanned a wide range of biological conditions, from good to very poor. Over all six basins sampled in 1995, half of the stream miles fell into the range of good to fair. Roughly 25% of stream miles showed some degradation. The IBI will be used in conjunction with physical and chemical data to answer critical questions about the health of Maryland streams and the relative impacts of human-induced stresses on the state's aquatic systems.  相似文献   

10.
Multimetric indices (MMIs) are routinely used by federal, state, and tribal entities to assess the quality of aquatic resources. Because of their diversity, abundance, ubiquity, and sensitivity to environmental stress, benthic macroinvertebrates are well suited for MMIs. West Virginia has used a statewide family-level stream condition index (WVSCI) since 2002. We describe the development, validation, and application of a geographically- and seasonally partitioned genus-level index of most probable stream status (GLIMPSS) for West Virginia wadeable streams. Natural classification strata were evaluated with reference site communities using mean similarity analysis and non-metric multidimensional scaling ordination. Forty-one metrics spanning six ecological categories (richness, composition, tolerance, dominance, trophic groups, and habits) were evaluated for sensitivity, responsiveness, redundancy, range and variability across seasonal (spring and summer) and regional (mountains and plateau) strata. Through a step-wise metric selection process, 8–10 metrics were aggregated to comprise four stratum-specific GLIMPSS models (mountain/plateau and spring/summer). A comparison of GLIMPSS with WVSCI exhibited marked improvements where GLIMPSS detecting greater stream impacts. A variation of the GLIMPSS, which differs only in the family-level taxonomic identification of Chironomidae (GLIMPSS (CF)), was comparable to the full GLIMPSS. These MMIs are robust yet practical tools for evaluating impacts to water quality, instream and riparian habitat, and aquatic wildlife in wadeable riffle-run streams based on sensitivity, responsiveness, precision, and independent validation. These models may be used effectively to detect degradation of the naturally occurring benthic community, assess causes of biological degradation, and plan and evaluate remediation of damaged stream ecosystems.  相似文献   

11.
Using a spatially extensive database from the Maryland Biological Stream Survey (MBSS), we describe nutrient relationships of small-order, non-tidal streams to Maryland watershed basins, Maryland Tributary Strategy basins, and stream order. In addition, we estimate the number of stream km affected by nutrient loading, using derived nutrient criteria. Based on the MBSS spring water quality sampling, we determined several important factors relating to nutrient levels in non-tidal streams. There are strong linear relationships of nutrients to the percentage of agriculture and forested land present within MBSS sampling strata. Both mean total nitrogen (TN) and mean total phosphorus (TP) levels for watershed basins by stream order show exceedances of derived nutrient reference criteria for Maryland. Four Maryland basins have over 85% of their stream kilometers exceeding the TN criterion, with three basins over 90% of the TP criterion. To protect small stream integrity in Maryland, we recommend an upper stream TN criterion between 1.34 and 1.68 mg/L and an upper stream TP criterion between 0.025 and 0.037 mg/L, based on quantile analyses. Elevated levels of both TN and TP are present in non-tidal streams, with subsequent nutrient inputs into the upper freshwater tidal reaches of the Chesapeake Bay.  相似文献   

12.
I developed a fish-based index of biotic integrity (IBI) to assess environmental quality in intermittent headwater streams in Wisconsin, USA. Backpack electrofishing and habitat surveys were conducted four times on 102 small (watershed area 1.7–41.5 km2), cool or warmwater (maximum daily mean water temperature ≥22 C), headwater streams in spring and late summer/fall 2000 and 2001. Despite seasonal and annual changes in stream flow and habitat volume, there were few significant temporal trends in fish attributes. Analysis of 36 least-impacted streams indicated that fish were too scarce to calculate an IBI at stations with watershed areas less than 4 km2 or at stations with watershed areas from 4–10 km2 if stream gradient exceeded 10 m/km (1% slope). For streams with sufficient fish, potential fish attributes (metrics) were not related to watershed size or gradient. Seven metrics distinguished among streams with low, agricultural, and urban human impacts: numbers of native, minnow (Cyprinidae), headwater-specialist, and intolerant (to environmental degradation) species; catches of all fish excluding species tolerant of environmental degradation and of brook stickleback (Culaea inconstans) per 100 m stream length; and percentage of total individuals with deformities, eroded fins, lesions, or tumors. These metrics were used in the final IBI, which ranged from 0 (worst) to 100 (best). The IBI accurately assessed the environmental quality of 16 randomly chosen streams not used in index development. Temporal variation in IBI scores in the absence of changes in environmental quality was not related to season, year, or type of human impact and was similar in magnitude to variation reported for other IBI's.  相似文献   

13.
In the United States, probability-based water quality surveys are typically used to meet the requirements of Section 305(b) of the Clean Water Act. The survey design allows an inference to be generated concerning regional stream condition, but it cannot be used to identify water quality impaired stream segments. Therefore, a rapid and cost-efficient method is needed to locate potentially impaired stream segments throughout large areas. We fit a set of geostatistical models to 312 samples of dissolved organic carbon (DOC) collected in 1996 for the Maryland Biological Stream Survey using coarse-scale watershed characteristics. The models were developed using two distance measures, straight-line distance (SLD) and weighted asymmetric hydrologic distance (WAHD). We used the Corrected Spatial Akaike Information Criterion and the mean square prediction error to compare models. The SLD models predicted more variability in DOC than models based on WAHD for every autocovariance model except the spherical model. The SLD model based on the Mariah autocovariance model showed the best fit (r2 = 0.72). DOC demonstrated a positive relationship with the watershed attributes percent water, percent wetlands, and mean minimum temperature, but was negatively correlated to percent felsic rock type. We used universal kriging to generate predictions and prediction variances for 3083 stream segments throughout Maryland. The model predicted that 90.2% of stream kilometers had DOC values less than 5 mg/l, 6.7% were between 5 and 8 mg/l, and 3.1% of streams produced values greater than 8 mg/l. The geostatistical model generated more accurate DOC predictions than previous models, but did not fit the data equally well throughout the state. Consequently, it may be necessary to develop more than one geostatistical model to predict stream DOC throughout Maryland. Our methodology is an improvement over previous methods because additional field sampling is not necessary, inferences about regional stream condition can be made, and it can be used to locate potentially impaired stream segments. Further, the model results can be displayed visually, which allows results to be presented to a wide variety of audiences easily.  相似文献   

14.
Single-pass electrofishing was used to define the most efficient sampling distance to assess stream condition using the index of biotic integrity (IBI) methodology in headwater (<36 km2 drainage area), warmwater streams in the Eastern Corn Belt Plain ecoregion. Based on wetted widths (1–3.3 m) of sampled reaches, we defined effort based on increased area (range 50–555 m2). Sampled area necessary to capture a representative fish assemblage increased until 167-m2 distance, which is equivalent to a minimum sampling distance of one habitat cycle. No significant difference in metric actual observed value response was found with increasing habitat cycle. Increased effort is required in smaller streams widths (≤1 m) to achieve the recommended sample area. The effect of rare fish on the IBI was tested using a modified Walford method. A significant decrease in IBI score was observed when 10 % of the rare data were removed. The presence of rare fish did not influence individual IBI metrics or scores for either the increased effort or reduced effort calibrations until greater than 3 % of the data was removed for number of species, 15 % removal of data for number of minnow species, and 5 % removal of data for catch per unit effort (CPUE). Increased effort did not affect any metric or IBI score, while reduced effort influenced the number of darter, madtom, and sculpin species and catch per unit effort metric scores but did not affect IBI score.  相似文献   

15.
Amphibians may be useful indicators of biological condition in small streams so determining which sampling technique maximizes encounters at the least cost and at the optimal time of year is important. Area constrained surveys (ACS), used by the Maryland Biological Stream Survey, were tested against cover board surveys, drift fences with pitfall and funnel traps, quadrat leaf litter searches, and leaf litter bags. Sixteen, 100 m-long sites were established in headwater streams in the Savage River State Forest in Garrett County, Maryland. Each technique was randomly assigned to a 25 m stream section within each overall sampling site, and sites were sampled once each month from May to October (2005) with additional sampling in March and April (2006). Area constrained surveys yielded means of 2.7 taxa and 14.9 total individuals per sampling visit, which was significantly higher than the yield of all other methods in all months except October and March, when yields were low for all techniques. Area constrained surveys were also significantly more cost-effective per taxon and per individual compared to all other methods. September produced the most taxa and individuals, October and March produced the least, and yields for April through August were similar to September. We employed removal sampling at four sites in April 2006, but abundance could not be estimated because a significant linear decrease in the accumulated catch versus catch per unit effort did not occur for three of the sites.  相似文献   

16.
Provisional physical habitat indices were developed and validatedfor Maryland Coastal and Non-Coastal Plain streams using variables (commonly called metrics) that best discriminated reference and degraded conditions based on biological, chemicaland land use data from the 1994–97 Maryland Biological Stream Survey (MBSS). These habitat indices contained variables that described structural, hydrological, vegetative and aesthetic components of stream habitat. Variables with the best discriminatory power for Coastal Plain streams were: instream habitat, velocity/depth diversity, pool/glide/eddy quality, embeddedness, maximum depth and aesthetic rating. Physical habitat variables with the best discriminatory power for Non-Coastal Plain sites were: instream habitat, velocity/depth diversity, riffle/run quality, embeddedness, number of rootwads and aesthetic rating. The overall classification efficiency forindex validation was 76% for both indices pooled over both strata. Scaled physical habitat index values (0–100) for bothstrata identified nearly twice as many good sites (31%) as very poor sites (16%). More than half the Maryland sites werein the poor to fair range (53%).  相似文献   

17.
Implementing a statistically valid and practical monitoring design for large-scale stream condition monitoring and assessment programs can be difficult due to factors including the likely existence of a diversity of ecosystem types such as ephemeral streams over the sampling domain; limited resources to undertake detailed monitoring surveys and address knowledge gaps; and operational constraints on effective sampling at monitoring sites. In statistical speak, these issues translate to defining appropriate target populations and sampling units; designing appropriate spatial and temporal sample site selection methods; selection and use of appropriate indicators; and setting effect sizes with limited ecological and statistical information about the indicators of interest. We identify the statistical and operational challenges in designing large-scale stream condition surveys and discuss general approaches for addressing them. The ultimate aim in drawing attention to these challenges is to ensure operational practicality in carrying out future monitoring programs and that the resulting inferences about stream condition are statistically valid and relevant.  相似文献   

18.
As part of a regional study by the Atlantic Slope Consortium (ASC) to develop ecological and socioeconomic indicators of aquatic ecosystem condition, we developed and tested a protocol for rapidly assessing condition of the stream, wetland, and riparian components of freshwater aquatic ecosystems. Aspects of hydrology, vegetation, in-stream and wetland characteristics, and on-site stressors were measured in the field. The resulting metrics were used to develop an index of overall condition, termed the Stream–Wetland–Riparian (SWR) Index. Values of this Index were compared to existing biotic indices and chemical measures, and to a Landscape Index created using satellite-based land cover data and a geographic information system (GIS). Comparisons were made at several levels of spatial aggregation and resolution, from site to small watershed. The SWR Index and associated Landscape Indices were shown to correlate highly with biological indicators of stream condition at the site level and for small contributing areas. The landscape patterns prevalent throughout the entire watershed do not necessarily match the patterns found adjacent to the stream network. We suggest a top-down approach that managers can use to sequentially apply these methods, to first prioritize watersheds based on a relative condition measure provided by the Landscape Index, and then assess condition and diagnose stressors of aquatic resources at the subwatershed and site level.  相似文献   

19.
In 1993, the U.S. Environmental Protection Agency (EPA), as part of the Environmental Monitoring and Assessment Program (EMAP), initiated a sample survey of streams in the mid-Atlantic. A major objective of the survey was to quantify ecological condition in wadeable streams across the region. To accomplish this goal, we selected 615 stream sites using a randomized sampling design with some restrictions. The design utilized the digitized stream network taken from 1:100,000-scale USGS topographic maps as the sample frame. Using a GIS, first- through third-order (wadeable) stream segments in the sample frame were randomly laid out in a line and sampled at fixed intervals after a random start. We used a variable probability approach so that roughly equal numbers of first-, second-, and third-order stream sites would appear in the sample. The sample design allows inference from the sample data to the status of the entire 230,400 km of wadeable stream length in the mid-Atlantic study area. Of this mapped stream length, 10% was not in the target population because no stream channel existed (4%), the stream channel was dry (5%), or the stream was not wadeable (1%). We were unable to collect field data from another 10% of the mapped stream length due to lack of access (mostly landowner denials). Thus, the field data we collected at 509 sites allows inference to the ecological condition for 184,600 km of the mapped stream length in the region.  相似文献   

20.
Stream restoration has increasingly been used as a best management practice for improving water quality in urbanizing watersheds, yet few data exist to assess restoration effectiveness. This study examined the longitudinal patterns in carbon and nitrogen concentrations and mass balance in two restored (Minebank Run and Spring Branch) and two unrestored (Powder Mill Run and Dead Run) stream networks in Baltimore, Maryland, USA. Longitudinal synoptic sampling showed that there was considerable reach-scale variability in biogeochemistry (e.g., total dissolved nitrogen (TDN), dissolved organic carbon (DOC), cations, pH, oxidation/reduction potential, dissolved oxygen, and temperature). TDN concentrations were typically higher than DOC in restored streams, but the opposite pattern was observed in unrestored streams. Mass balances in restored stream networks showed net uptake of TDN across subreaches (mean ± standard error net uptake rate of TDN across sampling dates for Minebank Run and Spring Branch was 420.3 ± 312.2 and 821.8 ± 570.3 mg m(-2) d(-1), respectively). There was net release of DOC in the restored streams (1344 ± 1063 and 1017 ± 944.5 mg m(-2) d(-1) for Minebank Run and Spring Branch, respectively). Conversely, degraded streams, Powder Mill Run and Dead Run showed mean net release of TDN across sampling dates (629.2 ± 167.5 and 327.1 ± 134.5 mg m(-2) d(-1), respectively) and net uptake of DOC (1642 ± 505.0 and 233.7 ± 125.1 mg m(-2) d(-1), respectively). There can be substantial C and N transformations in stream networks with hydrologically connected floodplain and pond features. Assessment of restoration effectiveness depends strongly on where monitoring is conducted along the stream network. Monitoring beyond the stream-reach scale is recommended for a complete perspective of evaluation of biogeochemical function in restored and degraded urban streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号