首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design and management of anaerobic digestion of sewage sludge (SS) require a relevant characterisation of the sludge organic matter (OM). Methods currently used are time-consuming and often insufficiently informative. A new method combining chemical sequential extractions (CSE) with 3D fluorescence spectroscopy was developed to provide a relevant SS characterisation to assess both OM bioaccessibility and complexity which govern SS biodegradability. CSE fractionates the sludge OM into 5 compartments of decreasing accessibility. First applied on three SS samples with different OM stability, fractionation profiles obtained were in accordance with the latter. 3D fluorescence spectroscopy revealed that the bioaccessible compartments were mainly constituted of simple and easily biodegradable OM while the unaccessible ones were largely made of complex and refractory OM. Then, primary, secondary and anaerobically digested sludge with different biodegradabilities were tested. Complexity revealed by 3D fluorescence spectroscopy was linked with biodegradability and chemical accessibility was correlated with sludge bioaccessibility.  相似文献   

2.
This study estimated the kinetics of the mono- and co-combustion of sewage sludge pellets and combustible wastes such as municipal solid waste (MSW) and refuse-derived fuel (RDF). Sewage sludge was manufactured into pellets with a diameter of 8, 12, or 16 mm and a length of 30 mm. The RDF was composed of paper and plastics and was formed into pellets with a diameter of 8 mm and a length of 30 mm. MSW samples were synthesized using combustible wastes such as garbage, paper, plastics, and wood. The MSW was adjusted to have a moisture content of around 40% after shredding to under 10 mm. A laboratory-scale batch type stoker incinerator was used for the combustion and the gas composition of the flue gas was measured. The activation energy was calculated using the experimental results, and then the relation of the decomposition rate and reaction time was evaluated using the shrinking core model. The decomposition rate of the sludge pellets decreased as their diameter and moisture content increased, and the co-combustion of sludge pellets and combustible waste was affected by the amount of combustible waste. The individual combustion rates of the cylindrical sludge pellets or RDF were mainly controlled by the chemical reaction, but in the case of shredded MSW it was mostly influenced by gas diffusion. The rate for the co-combustion of sludge pellets and combustible wastes was mainly determined by the combustion rate of the combustible waste. The activation energy of the 8-mm-diameter sludge pellets was between 6.70 and 10.0 kcal/mol, according to the moisture content, but it was lower for MSW and RDF. In the case of MSW co-combustion, the reaction rate accelerated as the moisture content of the sludge pellets decreased, but it was markedly increased by the addition of RDF, regardless of the sludge moisture content.  相似文献   

3.
Characteristics of municipal solid waste and sewage sludge co-composting   总被引:1,自引:0,他引:1  
The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW) and sewage sludge (SS). Four main influencing factors (aeration pattern, proportion of MSW and SS, aeration rate and mature compost (MC) recycling) were systematically investigated through changes of temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio, nitrogen loss, sulphur and hydrogen. We found that a continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process. A 3:1 (v:v) mixture of MSW and SS was most beneficial to composting. It maintained the highest temperature for the longest duration and achieved the fastest organic matter degradation and highest N content in the final composting product. A 0.5L/minkgVS aeration rate best ensured rapid initiation and maintained moderate moisture content for microorganisms. After the mature MC was recycled to the fresh materials as a bulking agent, the structure and moisture of the initial materials were improved. A higher proportion of MC resulted in quicker decrease of the temperature, oxygen consumption rate and moisture. Therefore a 3:1:1 (v:v:v) proportion of MSW: SS: MC is recommended.  相似文献   

4.
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.  相似文献   

5.
Organic matter stabilization resulted from the decrease of cellulose, xylan, arabinan, acetyl groups, glucuronic acids, galacturonic acids (easily biodegradable fractions) and the increase of lignin (resistant compound) and humic substances coming from the initial wastes have been studied. A central composite experimental design was used to investigate the influence of environmental composting parameters (moisture, aeration and particle size) on organic matter evolution. The organic matter evolution was clearly influenced by the studied composting parameters. All results were concordant, with an increase of humic substances and lignin and a decrease of the rest of the cellulose and hemicellulose compounds. Lower cellulose, xylan, acetyl groups and glucuronic acids contents (higher degradation) have been observed under low particle size (1 cm) and higher moisture content (70%). However lower lignin and higher humic substances under medium (3 cm) to low particle size and low moisture content (40%) have been found.  相似文献   

6.
Modern mechanical–biological waste treatment plants for the stabilization of both the source-separated organic fraction of municipal solid wastes (OFMSW) and the mixed stream of municipal solid wastes (MSW) include a mechanical pretreatment step to separate recyclable materials such as plastics, glass or metals, before biological treatment of the resulting organic material. In this work, the role of storage and mechanical pretreatment steps in the stabilization of organic matter has been studied by means of respiration techniques. Results have shown that a progressive stabilization of organic matter occurs during the pretreatment of the source-separated OFMSW, which is approximately 30% measured by the dynamic respiration index. In the case of mixed MSW, the stabilization occurring during the reception and storage of MSW is compensated by the effect of concentration of organic matter that the pretreatment step provokes on this material. Both results are crucial for the operation of the succeeding biological process. Finally, respiration indices have been shown to be suitable for the monitoring of the pretreatment steps in mechanical–biological waste treatment plants, with a strong positive correlation between the dynamic respiration index and the cumulative respiration index across all samples tested.  相似文献   

7.
The effects of amendment with municipal solid waste compost (MSWC) and anaerobically digested sewage sludge (SS) on the compositional and structural features of soil humic acids (HAs) were investigated. For this purpose, HAs were isolated from MSWC, SS, and two different Portuguese soils, a sandy Haplic Podzol and a clay loam Calcic Vertisol, which were either unamended or amended with MSWC or SS at a rate of 60tha(-1). The isolated HAs were analyzed for elemental and acidic functional group composition, and by ultraviolet/visible, Fourier transform infrared (FT IR), and fluorescence spectroscopies. The application of MSWC and especially SS to soils determined an increase of C, N, H, and S contents and E(4)/E(6) ratios (i.e., ratios of absorbances at 465 and 665nm), and a decrease of O, COOH, and phenolic OH contents and C/N, C/H, and O/C ratios of soil HAs. The FT IR and fluorescence results showed that the organic amendments, especially SS, caused an increase of the aliphatic character and a decrease of the degrees of aromatic polycondensation, polymerization, and humification of amended soil HAs. Both MSWC and SS affected more markedly the clayey soil HAs than the sandy soil HAs, possibly due to less extended mineralization processes and the protective action of clay minerals on amended soil HAs.  相似文献   

8.
In this work the composting process of municipal solid wastes was studied in order to characterize the transformations of organic matter, particularly humic acid (HA). A composting process, lasting three months, was monitored by chemical methods; the following parameters were measured: water-soluble carbon concentration (WSC) and humic substances content (humic and fulvic acid (FA)). The effects of humification on the molecular structure of humic acid (HA) were also evaluated by Fourier transform infrared (FT-IR) and (13)C NMR spectroscopy. WSC concentration rapidly increased reaching a maximum at day-14 of the composting process and then declined. The humic and fulvic acid content (HA and FA, respectively) slightly increased during the process. The FT-IR and (13)C NMR spectra of HA indicate a high rate of change in structure during composting. The groups containing aromatic and carboxylic C increased, while polysaccharides and other aliphatic structures degraded during composting, resulting in HA structures of higher aromaticity. Therefore, spectrometric measurements could provide information significantly correlated to conventional chemical parameters of compost maturity.  相似文献   

9.
Three sewage sludge composts were obtained from mixtures of an aerobic sludge (AS) and three organic wastes differing widely in chemical composition: an extremely biodegradable waste (municipal solid waste, MSW), a plant residue (grape debris) and a residue with a carbon fraction not easily mineralizable (peat residue). The following mixtures were made, the proportions referring to their total organic carbon content: AS-MSW 1/1, AS-GRAPE 3/1 and AS-PEAT 1/1. These mixtures were composted over 3 months in the open air with periodical turning, and were left to mature afterwards for 4 months. Uncomposted mixtures and composted mixtures, before and after maturation, were incubated for 38 days, under laboratory conditions, with a calcareous soil and the CO2 emission of the samples periodically measured.Uncomposted mixtures emitted much greater quantities of carbon than those composted, whether before or after maturation period. Both at the beginning and at the end of composting, differences were observed between the total amount of carbon emitted by the mixture containing peat waste and the others. However, the quantities of carbon emitted from the three mixtures tended to even out in mature composts, reaching a maximum of 600 mg carbon per 100 g total organic carbon. This shows that, although the mineralization of carbon depends on the nature of the organic waste mixed with the sewage sludge, it tends to even out when the mixtures have undergone composting.  相似文献   

10.
A complex mechanical-biological waste treatment plant designed for the processing of mixed municipal solid wastes (MSW) and source-selected organic fraction of municipal solid wastes (OFMSW) has been studied by using stability indices related to aerobic (respiration index, RI) and anaerobic conditions (biochemical methane potential, BMP). Several selected stages of the plant have been characterized: waste inputs, mechanically treated wastes, anaerobically digested materials and composted wastes, according to the treatment sequence used in the plant. Results obtained showed that the main stages responsible for waste stabilization were the two first stages: mechanical separation and anaerobic digestion with a diminution of both RI and BMP around 40% and 60%, respectively, whereas the third stage, composting of digested materials, produced lesser biological degradation (20-30%). The results related to waste stabilization were similar in both lines (MSW and OFMSW), although the indices obtained for MSW were significantly lower than those obtained for OFMSW, which demonstrated a high biodegradability of OFMSW. The methodology proposed can be used for the characterization of organic wastes and the determination of the efficiency of operation units used in mechanical-biological waste treatment plants.  相似文献   

11.
In this experiment, three microbial strains were inoculated in two different organic wastes to study their effect on the humic acids content, acid phosphatase activity and microbial properties of the final stabilized products. Pyrophosphate extract of vermicomposts were analyzed through polyacrylamide gel electrophoresis to study the nature of a isozymes in different treatments. Results suggested that vermicomposting increased humic acids content and acid phosphatase activity in organic substrates and microbial inoculation further enhanced the rate of humification and enzyme activity. Although humic acids content in different microorganism-inoculated vermicomposts were statistically at par, acid phosphatase activity in these treatments was significantly (P<0.05) different. Results revealed that microbial respiration was increased due to vermicomposting, but a reduction in microbial biomass was recorded after stabilization of organic wastes. Although vermicomposting increased the value of microbial quotient (qCO(2)), microbial inoculation did not show any significant effect on qCO(2). The zymogram revealed that two isozymes of acid phosphatase (group II and group III) were present in all vermicompost samples and higher acid phosphatase activity in fungi-inoculated vermicomposts might be due to the presence of an additional isozyme (group I) of acid phosphatase.  相似文献   

12.
Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis–gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres.Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis–gasification of MSW.A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable – highest environmental impact as well as highest costs – are the thermal cracking gasification of granulated MSW and the gasification of tyres.  相似文献   

13.
Humic acids obtained from sewage sludge both before and after composting were characterized, and the influence of composting on the formation of more stable and polycondensed structures was studied. These humic acids showed an aliphatic character and although no great differences between humic acids from uncomposted and composted sewage sludge were observed, data from elemental analysis, E4/E5 ratio, filtration through Sephadex G-100 gel and infra-red spectra seemed to demonstrate that more polycondensed structures and hence a more stable organic matter, was obtained with the composting process.  相似文献   

14.
采用低压直流电电解剩余活性污泥,优化了支持电解质的种类、加入量及电压梯度等工艺条件,并考察了在最佳工艺条件下SS去除率、污泥中有机物的质量分数(以VSS/SS计)、污泥pH及污泥沉降性能随电解时间的变化情况。实验结果表明,低压直流电电解污泥的最佳工艺条件为:电压梯度7 V/cm;支持电解质Na2SO4加入量0.4.0 mmol/g(以每克干污泥计)。在最佳工艺条件下电解pH为5.8、SS=(7 850 ±200)mg/L、VSS=(6 150±150)mg/L、溶解性化学需氧量(SCOD)为(61.2 ±20)mg/L的污泥,电解60 min时污泥的SCOD最大,达393.3 mg/L,SS去除率达14.4%,VSS/SS为58.5%,污泥pH为3.1。电解后污泥中微生物的细胞结构已不完整,污泥絮体被严重破坏。电解时间越长,污泥的沉降速率越快。  相似文献   

15.
The concentration of hardly biodegradable humic substances in sludge would relatively increase after anaerobic digestion due to the degradation of other organic substances. Thus, extracting humic substances from digested sludge as a liquid organic fertilizer was tested using alkaline treatment and ultrafiltration, and the dewaterability of the residual sludge was also tested. The results showed that the contents of humic acids and fulvic acids in digested sludge were 16.4 mg/g total solids and 88.9 mg/g total solids, respectively, and most of the humic acids had a molecular weight higher than 50 kDa. Hence, the membrane with a molecular weight cut-off of 50 kDa was used for humic acids recovery from the centrifugation supernatant after alkaline sludge disintegration with an optimum NaOH dose of 0.1 mol/L. Under these conditions, the total concentration of humic acids and fulvic acids was 4239 mg/L in the retention solution, which can be further concentrated and processed for liquid fertilizer. The total recovery rate of sludge humic acids and fulvic acids was about 25 %. The dewatering performance of the residual sludge was better than that of the untreated sludge when the residual sludge was diluted to a water content of 95–98 % and then conditioned with polyacrylamide at a dose of 10–30 mg/L.  相似文献   

16.
Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by 31P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at ?50 °C and a thermoelectric thermostat drying box at 105 °C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorous that can be directly absorbed by plants. 31P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P.  相似文献   

17.
Iran is the second largest stockholder of construction stones with 10 % of world production ;and there are more than 4000 stone cutting and fabrication industries (SCFIs). In the processing of raw stones, a considerable part of stone is turned into waste. Generated wastes include excess parts of different stones and sludge. The present paper reviews the state of SCFIs waste management using multiple data sources including site, analysis of effluent and sludge samples, and conducting interviews with people who are involved in 286 SCFIs in Qom and Tabriz. The results revealed that currently almost 35 to 52.5 % of raw stones were converted to solid wastes depending on stone cutting and processing methods, type of stones and their quality, which seemed a high percentage. Also, the effluents between 0.8 and 2.8 m3 were generated per ton of processed stone. Based on the analysis of heavy metals with atomic absorption spectroscopy, sludge samples contained a considerable amount of Pb, Cu, Cr, and Cd. It was also found that the lack of specific recycling, reuse and disposal programs and suitable supervision has led to uncontrolled disposal of stone wastes and sludge in different areas. However, there are good opportunities for reuse and recycling of the SCFIs wastes.  相似文献   

18.
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.  相似文献   

19.
In this study, the main characteristics and soil amendment effects on the saline–alkali soil of humic acid extracted from solubilized excess sludge (SS-HA) were investigated. The excess sludge was solubilized prior to extraction to improve the humic acid recovery rate. The structural features of SS-HA were characterized by an elemental analysis, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy, and compared with those of HA extracted from non-solubilized excess sludge (ES-HA). The results showed that extraction efficiency of humic acid was enhanced by using solubilization, although structural properties of humic acid extracted from solubilized excess sludge were almost the same as those of ES-HA. To study a utilization method of SS-HA, the soil amendment effects on saline–alkali soil by mixture of SS-HA were investigated with a model soil-column experiment. SS-HA reduced the pH of the saline–alkali soil, and the effect was immediately observed or faster than the case in which only peat is added. Moreover, the cation exchangeable capacity of the saline–alkali soil was enhanced by addition of SS-HA.  相似文献   

20.
The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO2 respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号