首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where different sampler types are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a bronze foundry where lead is added to an alloy of copper, zinc and iron to improve casting, using the closed-face 37 mm cassette, the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). For lead, all five samplers gave correlations (r(2)) greater than 0.9 between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). However, a correction was required to adjust linear regression trendlines to give a 1 : 1 correlation for the average of three readings across the GSP sampler, and a similar correction was required for the single readings from the IOM sampler and the 25 mm filter cassette. The bias possibly is due to interference from other metals, possibly copper which can absorb the fluorescent radiation of lead. In the case of the Button sampler, the bias is larger, indicating a further source of error, perhaps due to the thickness of the deposit. However, in all cases, correction of the lead results did not greatly affect the overall percentage of samples where the XRF result was within 25% of the ICP result, although it did improve the overall accuracy of the results. The GSP, IOM and Button samplers are suitable candidates for further evaluation as compatible with on-site XRF analysis for lead and other metals. It is important to check carefully factory pre-set instrument calibrations, as a bias in the calibration for copper was observed.  相似文献   

2.
Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass, which encompassed the permissible exposure limit of 150 mg m(-3) enforced in the USA by the Mine Safety and Health Administration (MSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects from the presence of iron and zinc in the samples. An approximately 10% negative bias was found for the slope of the Button sampler regression, in line with other studies, but it did not significantly affect the accuracy as all XRF results from this sampler were within 20% of the corresponding ICP values. As in previous studies, the best results were obtained with the GSP sampler using the average of three readings, with all XRF results within 20% of the corresponding ICP values and a slope close to 1 (0.99). Greater than 95% of XRF results were within 20% of the corresponding ICP values for the closed-face 37 mm cassette using the OSHA algorithm, and the IOM sampler using a sample area of 3.46 cm2. As in previous studies, considerable material was found on the interior walls of all samplers that possess an internal surface for deposition, at approximately the same proportion for all samplers. At the lead-acid battery recycler all five samplers in their optimal configurations gave good correlations (r2 > 0.92) between the two analytical methods over the entire range of found lead mass, which included the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations (except for the Button sampler), indicating an absence of matrix effects from the presence of the smaller quantities of the other metals in the samples. A negative bias was found for the slope of the button sampler regression, in line with other studies. Even though very high concentrations of lead were encountered (up to almost 6 mg m(-3)) no saturation of the detector was observed. Most samplers performed well, with >90% of XRF results within +/- 25% of the corresponding ICP results for the optimum configurations. The OSHA algorithm for the CFC worked best without including the back-up pad with the filter.  相似文献   

3.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where various types of sampler are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a manufacturer of solder alloys consisting mainly of lead and tin, using the closed-face 37 mm cassette (CFC), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). The internal surfaces of CFC's and 25 mm open-face cassettes were also wiped, and the wipes analyzed for lead to assess wall-losses in these two samplers. Analysis of all elements present is useful to ascertain contributions to matrix interference effects. In addition to lead, other metals such as tin, copper, iron, silver, cadmium and antimony were also detected in some or all of the samples by ICP analysis, but only copper and iron could be determined using the XRF analyzer under test. After the removal of a few outliers, all five samplers gave good correlations (r(2) > 0.9) between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects, particularly from tin, which was the most common element after lead. The average of three XRF readings across filters from the GSP samplers gave the best results with 96.7% of results within +/-25% and 100% within +/-30% of the associated ICP values. Using the center reading only was almost as good with 90.0% of results within +/-25% and 96.7% within +/-30% of the associated ICP values, and results can be obtained faster with a single reading. The use of an algorithm developed by OSHA for three readings from the CFC filter samples gave the next best results with 93.3% of XRF results within +/-25% of the corresponding ICP values. However, analysis of wipes from the interior of the cassettes indicated a substantial loss of sample to the walls, and even larger wall-losses were encountered in the 25 mm open-face cassette. Neither this latter sampler nor the IOM or button sampler met the 95% criterion, even for +/-30% accuracy.  相似文献   

4.
A method has been described previously for determining particle size distributions in the inhalable size range collected by personal samplers for wood dust. In this method, the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood-dust particles which are generally large and close to rectangular prisms in shape. The method was used to investigate the differences in total mass found previously in studies of side-by-side sample collection with different sampler types. Over 200 wood-dust samples were collected in three different wood-products industries, using the traditional 37 mm closed-face polystyrene/acrylonitrile cassette (CFC), the Institute of Occupational Medicine (IOM) inhalable sampler, and the Button sampler developed by the University of Cincinnati. Total mass concentration results from the samplers were found to be in approximately the same ratio as those from traditional long-term gravimetric samples, but about an order of magnitude higher. Investigation of the size distributions revealed several differences between the samplers. The wood dust particulate mass appears to be concentrated in the range 10-70 aerodynamic equivalent diameter (AED), but with a substantial mass contribution from particles larger than 100 microm AED in a significant number of samples. These ultra-large particles were found in 65% of the IOM samples, 42% of the CFC samples and 32% of the Button samples. Where present, particles of this size range dominated the total mass collected, contributing an average 53% (range 10-95%). However, significant differences were still found after removal of the ultra-large particles. In general, the IOM and CFC samplers appeared to operate in accordance with previous laboratory studies, such that they both collected similar quantities of particles at the smaller diameters, up to about 30-40 [micro sign]m AED, after which the CFC collection efficiency was reduced dramatically compared to the IOM. The Button sampler collected significantly less than the IOM at particle sizes between 10.1 and 50 microm AED. The collection efficiency of the Button sampler was significantly different from that of the CFC for particle sizes between 10.1 and 40 microm AED, and the total mass concentration given by the Button sampler was significantly less than that given by the CFC, even in the absence of ultra-large particles. The results are consistent with some relevant laboratory studies.  相似文献   

5.
In 1998 the American Conference for Governmental Industrial Hygienists (ACGIH) proposed size selective sampling for wood dust based on the inhalable fraction. Thus the proposed threshold limit values (TLVs) require the use of a sampler whose performance matches the inhalable convention. The Institute of Occupational Medicine (IOM) sampler has shown good agreement with the inhalable convention under controlled conditions, and the Button sampler, developed by the University of Cincinnati, has shown reasonable agreement in at least one laboratory study. The Button sampler has not been previously evaluated under wood working conditions, and the IOM has been shown to sample more mass than expected when compared to the standard closed-face cassette, which may be due to the collection of very large particles in wood working environments. Some projectile particles may be > 100 microm aerodynamic diameter and thus outside the range of the convention. Such particles, if present, can bias the estimates of concentration considerably. This study is part of an on-going research focus into selecting the most appropriate inhalable sampler for use in these industries, and to examine the impact of TLV changes. This study compared gravimetric analyses (National Institute of Occupational Safety and Health Method 0500) of side-by-side personal samples using the Button, IOM, and 37 mm closed-face cassette (CFC) under field-use conditions. A total of 51 good sample pairs were collected from three wood products industries involved in the manufacturing of cabinets, furniture, and shutters. Paired t-tests were run on each sample pair using Statistical Package for the Social Sciences (SPSS) version 10. The IOM and the CFC measured statistically different concentrations (p < 0.0005, n = 16). The IOM and Button measured statistically different concentrations (p = 0.020, n = 12). The Button and CFC did not measure statistically different concentrations of wood dust (p = 0.098, n = 23). Sampler ratios for IOM/CFC pairs ranged from 1.19-19 (median 3.35). Sampler ratios for IOM/Button pairs ranged from 0.49-163 (median 3.15). Sampler ratios for CFC/Button pairs ranged from 0.36-27 (median 1.2). In all cases, higher ratios were associated with higher concentrations. The median relative difference between the IOM's and CFC's is in accord with prior field studies in woodworking environments, and, taken together, the data imply a conversion factor greater than the 2.5 normally applied to CFC results to approximate inhalable values, as measured by the IOM. Raising the limit values by approximately 50% appears warranted for this particular situation of inhalable wood dust measured by the IOM. The IOM/Button and CFC/Button ratios were unexpectedly low, which may be due to the exclusion of very large particles, collected by the IOM and CFC samplers. Further work is required to explain these results.  相似文献   

6.
Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.  相似文献   

7.
This paper concludes a five-year program on research into the use of a portable X-ray fluorescence (XRF) analyzer for analyzing lead in air sampling filters from different industrial environments, including mining, manufacturing and recycling. The results from four of these environments have already been reported. The results from two additional metal processes are presented here. At both of these sites, lead was a minor component of the total airborne metals and interferences from other elements were minimal. Nevertheless, only results from the three sites where lead was the most abundant metal were used in the overall calculation of method accuracy. The XRF analyzer was used to interrogate the filters, which were then subjected to acid digestion and analysis by inductively-coupled plasma optical-emission spectroscopy (ICP-OES). The filter samples were collected using different filter-holders or "samplers" where the size (diameter), depth and homogeneity of aerosol deposit varied from sampler to sampler. The aerosol collection efficiencies of the samplers were expected to differ, especially for larger particles. The distribution of particles once having entered the sampler was also expected to differ between samplers. Samplers were paired to allow the between-sampler variability to be addressed, and, in some cases, internal sampler wall deposits were evaluated and compared to the filter catch. It was found, rather surprisingly, that analysis of the filter deposits (by ICP-OES) of all the samplers gave equivalent results. It was also found that deposits on some of the sampler walls, which in some protocols are considered part of the sample, could be significant in comparison to the filter deposit. If it is concluded that wall-deposits should be analyzed, then XRF analysis of the filter can only give a minimum estimate of the concentration. Techniques for the statistical analysis of field data were also developed as part of this program and have been reported elsewhere. The results, based on data from the three workplaces where lead was the major element present in the samples, are summarized here. A limit of detection and a limit of quantitation are provided. Analysis of some samples using a second analyzer with a different X-ray source technology indicated reasonable agreement for some metals (but this was not evaluated for lead). Provided it is only necessary to analyze the filters, most personal samplers will provide acceptable results when used with portable XRF analysis for lead around applicable limit values.  相似文献   

8.
Symptoms such as shortness of breath and cough have been noted in woodworking facilities even where wood dust itself is well-controlled. Suspicion has fallen on other possible contaminants in the workplace atmosphere, including bacterial endotoxin. A few studies have indicated potentially high endotoxin exposure with exposure to fresh wood in sawmills and in the production of fiberboard and chipboard, but fewer studies have been carried out on exposure to endotoxin in dry wood work, for example in joineries. A study of the endotoxin content of airborne wood dust samples from US woodworking facilities is presented, from the re-analysis of samples which previously had been taken to establish mass collection relationships between the IOM sampler, the closed-face 37 mm plastic cassette (CFC) sampler and the Button sampler. Endotoxin was strongly correlated with total dust, but the endotoxin content of a few fresh wood samples was found to be up to ten times higher per unit of wood dust than for dried-wood samples, and this difference was significant. No long-term time-weighted average sample exceeded the recommended limit value of 50 EU m(-3) (EU, endotoxin units)used in the Netherlands, although a number of the IOM samples came close (seven samples or 44% exceeded 20 EU m(-3)) and one short-term (48 minute) sample registered a high value of 73 EU m(-3). The geometric mean concentration from the IOM samples (11 EU m(-3)) is within the range of geometric means found from Australian joineries (3.7-60, combined: 24 EU m(-3)). In contrast, the corresponding values from the CFC (3.6 EU m(-3)), and the Button sampler (2.1 EU m(-3)) were much lower and no samples exceeded 20 EU m(-3). Endotoxin is likely only to be a significant problem in working with dried woods when associated with very high dust levels, where the wood dust itself is likely to be a cause for concern. The results from the few samples in this study where fresh wood was being worked were similar to results from other studies involving fresh woods. The agreement between these studies is encouraging given the difficulties of endotoxin analysis and the wide variation often expected between different laboratories.  相似文献   

9.
The USEPA replaced TSP with PM10 as the National Ambient Air Quality Standard for particulate matter. The commercially available PM10 sampler is a high-volume model using quartz fiber filters. In certain investigations, such as source apportionment studies, chemical analysis of the filter is necessary, however, many analyses cannot be run on quartz filters. An alternate filter such as Teflon is amenable to XRF and ion chemical analyses but is not amenable to analysis for carbon. To overcome these problems DRI constructed a medium-volume PM10 sampler that is capable of collecting particulates on both Teflon and quartz fiber filters simultaneously. This paper describes the design of the DRI medium-volume PM10 sampler, discusses a method for determining equivalence of two samplers, the results of applying the method to test the equivalence of the medium-volume sampler and a commerical high-volume sampler, and examines differences between PM10 and TSP measurements in a southwestern desert.  相似文献   

10.
An understanding of the scaling laws governing aerosol sampler performance leads to new options for testing aerosol samplers at small scale in a small laboratory wind tunnel. Two methods are described in this paper. The first involves an extension of what is referred to as the "conventional" approach, in which scaled aerosol sampler systems are tested in a small wind tunnel while exposed to relatively monodisperse aerosols. Such aerosols are collected by test and reference samplers respectively and assessed gravimetrically. The new studies were carried out for a modified, low flowrate version of the IOM personal inhalable aerosol sampler. It was shown that such experiments can be carried out with a very high level of repeatability, and this supported the general validity of the aerosol sampler scaling laws. The second method involves a novel testing system and protocol for evaluating the performances of aerosol samplers. Here, scaled aerosol samplers of interest are exposed to polydisperse aerosols, again in a small wind tunnel. In this instance, the sampled particles are counted and sized using a direct-reading aerodynamic particle sizer (the APS). A prototype automated aerosol sampler testing system based on this approach was built and evaluated in preliminary experiments to determine the performance of another modified version of the IOM personal inhalable aerosol sampler. The design of the new test system accounts for the complex fluid mechanical coupling that occurs near the sampler inlet involving the transition between the external flow outside the sampler and the internal airflow inside the sampler, leading in turn to uncontrolled particle losses. The problem was overcome by the insertion of porous plastic foam plugs. where the penetration characteristics are well understood, into the entries of both the test and the reference samplers. Preliminary experiments with this new system also supported the general validity of the aerosol sampler scaling laws. In addition, they demonstrated high potential that this approach may be applied in a standardised aerosol testing method and protocol.  相似文献   

11.
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.  相似文献   

12.
The dialdehyde glyoxal (ethanedial) is an increasingly used industrial chemical with potential occupational health risks. This study describes the development of a personal sampling methodology for the determination of glyoxal in workroom air. Among the compounds evaluated as derivatizing agents; N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH), 1,2-phenylenediamine (OPDA), 1-dimethylaminonaphthalene-5-sulfonylhydrazine (dansylhydrazine, DNSH) and 2,4-dinitrophenylhydrazine (DNPH), DNPH was the only reagent that was suitable. Several different samplers were evaluated for sampling efficiency of glyoxal in workroom air using DNPH as derivatizing agent; in-house DNPH coated silica particles packed in two different types of glass tubes, impingers containing acidified DNPH solution, filter cassettes containing glass fibre filters coated with DNPH, a commercially available solid phase cartridge sampler originally developed for formaldehyde sampling (Waters Sep-Pak DNPH-silica cartridge), and the commercially available SKC UMEx 100 passive sampler originally developed for formaldehyde sampling. Aldehyde atmospheres for sampler evaluation were generated with an in-house made vapour atmosphere generator coupled to a sampling unit, with the possibility of parallel sampling. The resulting glyoxal-DNPH derivative was determined using both LC-UV and LC-APCI-MS with negative ionization. By far, the highest recovery of glyoxal was obtained employing one of the in-house DNPH coated silica samplers (93%, RSD = 3.6%, n = 12).  相似文献   

13.
This study describes the field evaluation of a tailor-made new glass passive sampler developed for the determination of NO(2), based on the collection on triethanolemine (TEA)-coated fibre filter paper. The sampler has been derived from a Palmes design. The overall uncertainty of the sampler was determined by using Griess-Saltzman ASTM D 1607 standard test method as a reference method. The agreement between the results of the passive sampler and the reference method was +/-7.90% with the correlation coefficient of 0.90. Method precision in terms of coefficient of variance (CV) for three simultaneously applied passive samplers was 8.80%. The uptake rate of NO(2) was found to be 2.49 ml/min in a very good agreement with the value calculated from theory (2.63 ml/min). Sampler detection limit was 1.99 microg/m(3) for an exposure period of 1 week and the sampler can be stored safely for a period of up to 6 weeks before exposure. A comparison of the sampler performance was conducted against a commercially available diffusion tube (Gradko diffusion tube). The results from the applied statistical paired t test indicated that there was no significant difference between the performances of two passive samplers (R (2) > 0.90). Also, another statistical comparison was carried out between the dark and transparent glass passive samplers. The results from the dark-colour sampler were higher than that from the transparent sampler (approximately 25%) during the summer season because of the possible photodegradation of NO(2)-TEA complex.  相似文献   

14.
In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.  相似文献   

15.
On February 26, 1988, the U.S. Environmental Protection Agency promulgated Standards of Performance for residential wood heaters, or woodstoves. Over the past several years, a number of field studies have been undertaken to determine the actual level of emission reduction achieved by new technology woodstoves in everyday use. These studies have required the development and use of particulate and gaseous emission sampling equipment compatible with operation in private houses. Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of substantial interest to determine the correlation between these regulatory methods and the in-house equipment. Two in-house sampling systems have been used most widely. One is an intermittent, pump-driven particulate sampler which collects particulate and condensable organics on a filter and organic adsorbent resin. Oxygen concentration is measured by a sensor in the sample line. The sampler is controlled by a data logger which also records other parameters of interest. The second system uses an evacuated cylinder as the motive force. Particulate and condensable organics are collected in a condenser and dual filter. The sampler operates continuously whenever the stack temperature is above the set point. Average stack gas concentrations are measured from the evacuated cylinder at the conclusion of the sampling period. Both samplers were designed to operate unattended for 1-week periods. A large number of tests have been run comparing Methods 5G and 5H to both of the field samplers. This paper presents these comparison data and determines the relationships between laboratory certification sampling methods and field samplers.  相似文献   

16.
Personal aerosol samplers are widely used to monitor human exposure to airborne materials. For bioaerosols, interest is growing in analyzing samples using molecular and immunological techniques. This paper presents a personal sampler that uses a two-stage cyclone to collect bioaerosols into disposable 1.5 ml Eppendorf-type microcentrifuge tubes. Samples can be processed in the tubes for polymerase chain reaction (PCR) or immunoassays, and the use of multiple stages fractionates aerosol particles by aerodynamic diameter. The sampler was tested using fluorescent microspheres and aerosolized fungal spores. The sampler had first and second stage cut-off diameters of 2.6 microm and 1.6 microm at 2 l min(-1)(geometric standard deviation, GSD = 1.45 and 1.75), and 1.8 microm and 1 microm at 3.5 l min(-1)(GSD = 1.42 and 1.55). The sampler aspiration efficiency was >or=98% at both flow rates for particles with aerodynamic diameters of 3.1 microm or less. For 6.2 microm particles, the aspiration efficiency was 89% at 2 l min(-1) and 96% at 3.5 l min(-1). At 3.5 l min(-1), the sampler collected 92% of aerosolized Aspergillus versicolor and Penicillium chrysogenum spores inside the two microcentrifuge tubes, with less than 0.4% of the spores collecting on the back-up filter. The design and techniques given here are suitable for personal bioaerosol sampling, and could also be adapted to design larger aerosol samplers for longer-term atmospheric and indoor air quality sampling.  相似文献   

17.
Two studies at three sites in the UK provided confirmation that systematic positive bias in NO2 diffusion tube measurement occurred because of changes to "within-tube" chemistry, rather than eddy diffusion at the mouth of the tube. In the first study in Cambridge, UK, sampler overestimation for 1 and 2 week exposures was compared to corresponding time-averaged monitor measurements (NO-NO2-NOx, O3) and weather variables. Noninearity between sampler and monitor NO2 measurements was interpreted in terms of spatial and temporal variations in relative and absolute availability of NO, NO2 and O3 at the site. A maximum overestimation occurred for an exposure mean NO2/NOx approximately 0.5. The separate contributions of reduced NO2 photolysis and eddy diffusion were compared in Study II using samplers of two materials, acrylic and quartz, and of different lengths (40, 55, 71 and 120 mm) at three sites: Norwich background, Cambridge intermediate, London kerbside. For compared sites, NO2 measured by acrylic samplers was significantly higher than for equivalent quartz samplers. For quartz samplers [NO2]mean was only just above the monitor at Norwich and London; sampler/monitor NO2 = 1.04 (P = 0.59) and 1.01(P = 0.76), respectively. For acrylic samplers the order of [NO2]mean was 40 mm > 120 mm > 71 mm > or = 55 mm. Excepting 40 mm samplers, this accords with a chemical bias where co-diffusing NO and 03 molecules in longer tubes have more time to react to form excess NO2. Bias in 40 mm samplers is discussed. Eddy diffusion is negligible for standard samplers because [NO2]mean was equivalent for 55 mm and 71 mm acrylic samplers and close to monitor NO2 for 71 mm quartz tubes. Both studies showed that sampler accuracy was dependent on location. Significantly, overestimation was greatest (approximately 3-4 ppb) where the NO2 annual mean was approximately 20 ppb, close to the UK and EU air quality standard of 21 ppb.  相似文献   

18.
We developed a method to analyze atmospheric SO(x) (particulate SO(4)(2-)+ gaseous SO(2)) and NO(x) (NO + NO(2)) simultaneously using a battery-operated portable filter pack sampler. NO(x) determination using a filter pack method is new. SO(x) and NO(x) were collected on a Na(2)CO(3) filter and PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) + TEA (triethanolamine) filters (6 piled sheets), respectively. Aqueous solutions were then used to extract pollutants trapped by the filters and the resulting extracts were pre-cleaned (e.g. elimination of PTIO) and analyzed for sulfate and nitrite by ion chromatography. Recoveries of SO(2) and NO(x) from standard pollutant gases and consistency of the field data with those from other instrumental methods were examined to evaluate our method. SO(x) and NO(x) could be analyzed accurately with determination limits of 0.2 ppbv and 1.0 ppbv (as daily average concentrations), respectively. The sampler can determine SO(x) and NO(x) concentrations at mountainous or remote sites without needing an electric power supply.  相似文献   

19.
Research by the National Institute for Occupational Safety and Health (NIOSH) has pursued quartz analysis for the specialized filter assemblies of a new worker-wearable personal dust monitor (PDM). The PDM is a real-time instrument utilizing a tapered element oscillating microbalance (TEOM). Standard fiberglass TEOM filters cannot accommodate the desired P-7 infrared analytical method used by the Mine Safety and Health Administration (MSHA). Novel filter materials were tested with the objective of demonstrating this type of analysis. Low temperature ashing and spectrometric examination were employed, revealing that nylon fiber candidate filters left minimal residual ash and produced no significant spectral interference. Avoiding titanium dioxide in all filter materials proved to be a key requirement. Fine quartz particulates were collected on prototype filters in a Marple chamber, either open-faced or through PDMs during test runs. The filters were then subjected to MSHA P-7 analysis and the spectrometrically based analytical results for quartz mass were compared to reference measurements. Also, PDM instrumental mass readings were compared to filter gravimetric measurements. Results suggest that the P-7 method is adaptable to variations in filter materials and that quartz dust analysis by the P-7 method when utilizing the new ashable PDM filters can have accuracy and precision within 10% and 4%, respectively. This is within the declared 13% accuracy and 7-10% precision of the P-7 method itself. Instrument mass readings had modest positive bias but met NIOSH accuracy criteria. Continued work with specialized PDM filters is merited, as they are a new type of TEOM sample amenable to ashing analysis of particulates.  相似文献   

20.
While polyurethane foam (PUF) disk passive air samplers are employed increasingly to monitor persistent organic pollutants in indoor air, they essentially sample only the vapour phase. As a previous investigation of the vapour : particle phase partitioning of hexabromocyclododecanes HBCDs in (outdoor) air reported them to be present largely in the particulate phase, we monitored three offices using active air samplers. In each, approximately 65% of HBCDs were present in the vapour phase, suggesting PUF disk passive samplers are suitable for monitoring HBCDs in indoor air. Concentrations in the three offices (239-359 pg Sigma HBCD m(-3)) exceed substantially those reported in outdoor air from the United States (2.1-11 pg Sigma HBCD m(-3)), but are in line with outdoor air from Stockholm. The relative abundance of the three principal diastereomers in office air was closer to that found in technical HBCD formulations (i.e. predominantly gamma-HBCD) than in most US outdoor air samples. Time integrated air concentrations of alpha-, beta-, and gamma-HBCD were obtained for an office using a low volume sampler operated over a 50 d period alongside PUF disk samplers. This calibration exercise yielded the following passive air sampling rates for both a fully- and part-sheltered PUF disk sampler design: for alpha-, beta-, and gamma-HBCD, 0.87, 0.89, and 0.91 m3 d(-1) respectively (fully-sheltered) and 1.38, 1.54, and 1.55 m3 d(-1) respectively (part-sheltered). Deployment of the part-sheltered configuration yielded concentrations approximately 35% lower than those obtained using a high volume sampler, consistent with PUF disk samplers measuring primarily the vapour phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号