首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
New materials of the ornithischian dinosaur Manidens condorensis highlight a strong heterodonty between the upper and lower dentitions and reveal a novel occlusion type previously unreported in herbivorous dinosaurs. The diamond-shaped maxillary teeth have prominent cingular entolophs in a V- to Z-shaped configuration that are absent in dentary teeth. These cingular entolophs bear denticles and serrations with vertical wear that is coplanar with the apical wear facets, supporting their involvement in chewing. The separated apical and basal wear in dentary teeth is consistent with the apical and cingular wear in maxillary teeth, indicating an alternate occlusion, an orthal jaw motion, and shearing interactions between marginal and cingular edges in a double occlusion. Measurements of the length and wear area along the marginal and cingular edges indicate that the latter are functionally equivalent to adding eight teeth to a maxillary toothrow of ten, almost doubling the lengths of cutting edges and the degree of intraoral processing, while maintaining a plesiomorphic skull anatomy, an adaptation to herbivory unique in Ornithischia.  相似文献   

2.
Spinosaurids are among the largest and most specialized carnivorous dinosaurs. The morphology of their crocodile-like skull, stomach contents, and oxygen isotopic composition of the bones suggest they had a predominantly piscivorous diet. Even if close relationships between spinosaurids and Middle Jurassic megalosaurs seem well established, very little is known about the transition from a generalized large basal tetanuran to the specialized morphology of spinosaurids. Spinosaurid remains were previously known from the Early to Late Cretaceous of North Africa, Europe, and South America. Here, we report the discovery of a new spinosaurid theropod from the late Early Cretaceous Savannakhet Basin in Laos, which is distinguished by an autapomorphic sinusoidal dorsosacral sail. This new taxon, Ichthyovenator laosensis gen. et sp. nov., includes well-preserved and partially articulated postcranial remains. Although possible spinosaurid teeth have been reported from various Early Cretaceous localities in Asia, the new taxon I. laosensis is the first definite record of Spinosauridae from Asia. Cladistic analysis identifies Ichthyovenator as a member of the sub-clade Baryonychinae and suggests a widespread distribution of this clade at the end of the Early Cretaceous. Chilantaisaurus tashouikensis from the Cretaceous of Inner Mongolia, and an ungual phalanx from the Upper Jurassic of Colorado are also referred to spinosaurids, extending both the stratigraphical and geographical range of this clade.  相似文献   

3.
A new African species of hystricognathous rodent, Gaudeamus lavocati sp. nov., is described herein from the early Oligocene deposits of Zallah locality (Sirt basin, Central Libya). The dental morphology of this species is very close to that of some earliest South American caviomorphs. It allows a reinterpretation of molar crest homologies among earliest caviomorphs, pentalophodonty being confirmed as the plesiomorphic molar condition in Caviomorpha. This morphological resemblance argues for close affinities between Gaudeamus and earliest South American hystricognaths. Cladistic analysis supports Gaudeamus lavocati sp. nov. as the first known African representative of Caviomorpha, implying that its ancestors were part of the African phiomyid group that crossed the South Atlantic by a direct immigration route. Alternatively, the series of derived dental features of Gaudeamus could also be interpreted as evolutionary synchronous convergences of an African hystricognath lineage towards the specialized pattern of some caviomorphs. However, the high level of similarities concerning teeth morphology and enamel microstructure and the similar age of fossiliferous strata on both continents make this interpretation less probable. The phylogenetic position of this taxon is of considerable importance because it represents an enigmatic component of the phiomorph–caviomorph radiation in Africa and appears as a new clue toward the understanding of caviomorph origins.  相似文献   

4.
The endemic South American mammals Meridiolestida, considered previously as dryolestoid cladotherians, are found to be non-cladotherian trechnotherians related to spalacotheriid symmetrodontans based on a parsimony analysis of 137 morphological characters among 44 taxa. Spalacotheriidae is the sister taxon to Meridiolestida, and the latter clade is derived from a primitive spalacolestine that migrated to South America from North America at the beginning of the Late Cretaceous. Meridiolestida survived until the early Paleocene (Peligrotherium) and early Miocene (Necrolestes) in South America, and their extinction is probably linked to the increasing competition with metatherian and eutherian tribosphenic mammals. The clade Meridiolestida plus Spalacotheriidae is the sister taxon to Cladotheria and forms a new clade Alethinotheria. Alethinotheria and its sister taxon Zhangheotheria, new clade (Zhangheotheriidae plus basal taxa), comprise Trechnotheria. Cladotheria is divided into Zatheria (plus stem taxa, including Amphitherium) and Dryolestida, including Dryolestidae and a paraphyletic array of basal dryolestidans (formerly classified as “Paurodontidae”). The South American Vincelestes and Groebertherium are basal dryolestidans.  相似文献   

5.
Small terrestrial non-eusuchian mesoeucrocodylians are common components of Cretaceous assemblages of Gondwanan provinces with notosuchians and araripesuchids as flagship taxa in South America, Africa and Madagascar, well into the Late Cretaceous. On the other hand, these are exceedingly rare in Laurasian landmasses during the Late Cretaceous. Small terrestrial mesoeucrocodylians from Europe were often referred to the genus Theriosuchus, a taxon with stratigraphic range extending from the Late Jurassic to the late Early Cretaceous. Theriosuchus is abundantly reported from various European localities, although Asiatic and possibly North American members are also known. It has often been closely associated with the first modern crocodilians, members of the Eusuchia, because of the presence of procoelous vertebrae, a widespread key character diagnosing the Eusuchia. Nevertheless, the relationships of Theriosuchus have not been explored in detail although one species, Theriosuchus pusillus, has been extensively described and referred in numerous works. Here, we describe a new basal mesoeucrocodylian, Theriosuchus sympiestodon sp. nov. from the Maastrichtian of the Haţeg Basin, Romania, suggesting a large temporal gap (about 58 myr) in the fossil record of the genus. Inclusion of the new taxon, along with Theriosuchus guimarotae, in a phylogenetic analysis confirms its referral to the genus Theriosuchus, within a monophyletic atoposaurid clade. Although phylogenetic resolution within this clade is still poor, the new taxon appears, on morphological grounds, to be most closely related to T. pusillus. The relationships of Atoposauridae within Mesoeucrocodylia and especially to Neosuchia are discussed in light of the results of the present contribution as well as from recent work. Our results raise the possibility that Atoposauridae might not be regarded as a derived neosuchian clade anymore, although further investigation of the neosuchian interrelationships is needed. Reports of isolated teeth referable to a closely related taxon from the Upper Cretaceous of Romania and France, together with the presence of Doratodon and Ischyrochampsa, indicate a previously unsuspected diverse assemblage of non-eusuchian mesoeucrocodylians in the Late Cretaceous European archipelago.  相似文献   

6.
Appearance of the tribosphenic molar in the Late Jurassic (160 Ma) is a crucial innovation for food processing in mammalian evolution. This molar type is characterized by a protocone, a talonid basin and a two-phased chewing cycle, all of which are apomorphic. In this functional study on the teeth of Late Jurassic Dryolestes leiriensis and the living marsupial Monodelphis domestica, we demonstrate that pretribosphenic and tribosphenic molars show fundamental differences of food reduction strategies, representing a shift in dental function during the transition of tribosphenic mammals. By using the Occlusal Fingerprint Analyser (OFA), we simulated the chewing motions of the pretribosphenic Dryolestes that represents an evolutionary precursor condition to such tribosphenic mammals as Monodelphis. Animation of chewing path and detection of collisional contacts between virtual models of teeth suggests that Dryolestes differs from the classical two-phased chewing movement of tribosphenidans, due to the narrowing of the interdental space in cervical (crown–root transition) direction, the inclination angle of the hypoflexid groove, and the unicuspid talonid. The pretribosphenic chewing cycle is equivalent to phase I of the tribosphenic chewing cycle, but the former lacks phase II of the tribosphenic chewing. The new approach can analyze the chewing cycle of the jaw by using polygonal 3D models of tooth surfaces, in a way that is complementary to the electromyography and strain gauge studies of muscle function of living animals. The technique allows alignment and scaling of isolated fossil teeth and utilizes the wear facet orientation and striation of the teeth to reconstruct the chewing path of extinct mammals.  相似文献   

7.
Ferganodon narynensis gen. et sp. nov. is represented by a lower molariform tooth from the Middle Jurassic (Callovian) Balabansai Svita in Kyrgyzstan. The new genus is allied with Klamelia zhaopengi Chow and Rich 1984 from the Middle Jurassic Shishugou Formation in Xinjiang, northwest China to the new family Klameliidae based on parallelogram-shaped lower molariforms, imbricating rather than interlocking of cusps e-d-f, by a peculiar distolabial cingulid cusp, and by vertical folding of the enamel on the labial crown side. The new family Klameliidae fam. nov. is most similar to Gobiconodontidae by the structure of the molariform teeth and represents a previously unrecognized radiation of eutriconodontan mammals possibly endemic to Central Asia.  相似文献   

8.
A new bolosaurid parareptile, Belebey chengi sp. nov., is described from Dashankou, Gansu Province, China, a Middle Permian locality which is known mostly for its therapsid fauna. The material consists of well-preserved mandibular and anterior skull remains and currently represents the largest and latest surviving member of Bolosauridae. Phylogenetic analysis of bolosaurid interrelationships, the first analysis of any clade of Early Permian parareptiles, indicates that the new taxon groups consistently with the other (Russian) members of the genus Belebey, and forms the sister clade to the genus Bolosaurus from North America. The Early Permian Eudibamus cursoris from Germany falls into the basal most position within Bolosauridae. Our analysis also shows that the split between the main bolosaurid lineages must have occurred near or before the Permo-Carboniferous boundary and that the paleo-equatorial region of Laurasia probably served as the center of origination for these parareptiles. A similar pattern can be found in other clades of Paleozoic amniotes, suggesting that this may be the general trend in early amniote evolution.  相似文献   

9.
Ornithischian and theropod dinosaurs were morphologically diverse during the Cretaceous. In contrast, sauropods were relatively more conservative. The anatomy of Bonitasaura salgadoi, a new 9-m titanosaurian sauropod from Upper Cretaceous beds of Patagonia, suggests that sauropod anatomical diversity would have included unexpected items. Its unusual, rectangular lower jaw possesses narrow, anteriorly restricted teeth and shows evidence of a sharp keratinous sheath over the non-dentigerous region that probably worked to guillotine plant material. This discovery definitely demonstrates that titanosaurs acquired a mandibular configuration similar to that of some basal diplodocoids, as had already been suggested by the lower jaw of the controversial genus Antarctosaurus. This oral configuration, plus the beak-like structure and the skull shape, resemble some traits more commonly seen in Laurasian ornithischians, mostly unexpressed in southern continents. A high sauropod morphological diversity seems to be in agreement with the poorly represented ornithischian clades of the southern hemisphere.Communicated by G. Mayr  相似文献   

10.
The fossil record of late Campanian tyrannosauroids of western North America has a geographic gap between the Northern Rocky Mountain Region (Montana, Alberta) and the Southwest (New Mexico, Utah). Until recently, diagnostic tyrannosauroids from the Southwest were unknown until the discovery of Bistahieversor sealeyi from the late Campanian of New Mexico. Here we describe an incomplete skull and postcranial skeleton of an unusual tyrannosaurid from the Kaiparowits Formation (Late Cretaceous) of Utah that represents a new genus and species, Teratophoneus curriei. Teratophoneus differs from other tyrannosauroids in having a short skull, as indicated by a short and steep maxilla, abrupt angle in the postorbital process of the jugal, laterally oriented paroccipital processes, short basicranium, and reduced number of teeth. Teratophoneus is the sister taxon of the Daspletosaurus + Tyrannosaurus clade and it is the most basal North American tyrannosaurine. The presence of Teratophoneus suggests that dinosaur faunas were regionally endemic in the west during the upper Campanian. The divergence in skull form seen in tyrannosaurines indicates that the skull in this clade had a wide range of adaptive morphotypes.  相似文献   

11.
Dromaeosaurids from the Maastrichtian of North America have a poor fossil record and are known largely from isolated teeth, which have typically been referred to taxa based on more complete material from earlier Campanian strata. An almost complete maxilla with well-preserved dentition and an associated dentary from the Hell Creek Formation of Montana are used to establish a new dromaeosaurid taxon in the latest Maastrichtian, immediately prior to the end-Cretaceous extinction event. Acheroraptor temertyorum gen. et sp. nov. is differentiated from other dromaeosaurids on the basis of a hypertrophied postantral wall that projects posteriorly into the antorbital fenestra, a maxillary fenestra positioned low in the antorbital fossa and directly posterior to the promaxillary fenestra, and distinctive dentition with marked apicobasal ridges. The new material allows a dromaeosaurid from the Maastrichtian of North America to be placed within a phylogenetic framework for the first time. Phylogenetic analysis suggests Acheroraptor is a velociraptorine that is more closely related to Asian dromaeosaurids, including Tsaagan and Velociraptor, than it is to Dromaeosaurus, Saurornitholestes, or any other taxon from North America. As part of the Lancian TyrannosaurusTriceratops fauna, A. temertyorum is the latest occurring dromaeosaurid. Its relationships and occurrence suggest a complex historical biogeographic scenario that involved multiple, bi-directional faunal interchanges between Asia and North America during the Late Cretaceous.  相似文献   

12.
Endemic South American river stingrays (Potamotrygonidae), which include the most diversified living freshwater chondrichthyans, were conspicuously absent from pre-Neogene deposits in South America despite the fact that recent phylogenetic analyses strongly suggest an older origination for this clade. To date, the rare representatives of this family were mostly represented by ambiguous isolated remains. Here, we report 67 isolated fossil teeth of a new obligate freshwater dasyatoid (Potamotrygon ucayalensis nov. sp) from the fossiliferous level CTA-27 (Yahuarango Formation), near Contamana, in the Peruvian Amazonia. We assigned this sample to a new representative of Potamotrygon by comparison with numerous fresh jaws of living specimens of Potamotrygonidae, thus providing the first detailed review of dental morphology for this poorly understood clade. These new fossils fill a long stratigraphic gap by extending the family range down to the middle Eocene (~41 Mya). Moreover, the relative modernity and diversity in tooth morphology among Eocene freshwater stingrays (including Potamotrygon ucayalensis nov. sp. and coeval North American dasyatoids) indicate that the hypothetically marine ancestor of potamotrygonids probably invaded the rivers earlier than in the middle Eocene. The first potamotrygonids and affiliates were possibly more generalized and less endemic than now, which is consistent with an opportunistic filling of vacated ecospace.  相似文献   

13.
Although Asia is thought to have played a critical role in the basal radiation of Ruminantia, the fossil record of early selenodont artiodactyls remains poorly documented in this region. Dental remains of a new bunoselenodont artiodactyl are described from the late Eocene of Krabi, southern Thailand. This new form, Krabitherium waileki gen. et sp. nov, is tentatively referred to the Tragulidae (Ruminantia) on the basis of several dental features, including a weak Tragulus fold and the presence of a deep groove on the anterior face of the entoconid. Although this new form is suggestive of the enigmatic ?Gelocus gajensis Pilgrim 1912 from the “base of the Gaj” (lower Chitarwata Formation) of the Bugti Hills (Central Pakistan), K. waileki most likely represents an early representative of a relatively bunodont group of tragulids that includes the genus Dorcabune, known from the Miocene of south Asia. This addition to the Eocene record of early ruminants attests to the antiquity of the group in Southeast Asia and lends support to the hypothesis that the Tragulidae represents one of the first offshoots in the evolutionary history of Ruminantia.  相似文献   

14.
All xenarthrans known to date are characterized by having permanent teeth that are both high crowned and open rooted, i.e., euhypsodont, and with a type of hypsodonty different from that of the rest of Placentalia: dentine hypsodonty. Also, most xenarthrans lack enamel; however, its presence has been reported in the fossil armadillo Utaetus buccatus and in living Dasypus. Considering the divergence of Xenarthra from other eutherians that possessed enameled teeth, the absence of enamel is a derived character. Diverse specializations are known in the dentition of xenarthrans, but the primitive pattern of their teeth and dentitions is still unknown. Here, we describe the mandible and teeth of a fossil armadillo, Astegotherium dichotomus (Astegotheriini, Dasypodidae), from the early Middle Eocene of Argentine Patagonia, with teeth showing both true enamel and closed roots. It is the oldest xenarthran with mandibular remains exhibiting protohypsodonty and is therefore likely representative of ancestral cingulates and xenarthrans generally. Astegotherium supports a recent hypothesis based on molecular data that enamel loss occurred independently not only within xenarthrans but also within dasypodid armadillos.  相似文献   

15.
A new taxon of chasmosaurine ceratopsid demonstrates unexpected disparity in parietosquamosal frill shape among ceratopsid dinosaurs early in their evolutionary radiation. The new taxon is described based on two apomorphic squamosals collected from approximately time equivalent (approximately 77 million years old) sections of the upper Judith River Formation, Montana, and the lower Dinosaur Park Formation of Dinosaur Provincial Park, Alberta. It is referred to Chasmosaurinae based on the inferred elongate morphology. The typical chasmosaurine squamosal forms an obtuse triangle in dorsal view that tapers towards the posterolateral corner of the frill. In the dorsal view of the new taxon, the lateral margin of the squamosal is hatchet-shaped with the posterior portion modified into a constricted narrow bar that would have supported the lateral margin of a robust parietal. The new taxon represents the oldest chasmosaurine from Canada, and the first pre-Maastrichtian ceratopsid to have been collected on both sides of the Canada–US border, with a minimum north–south range of 380 km. This squamosal morphology would have given the frill of the new taxon a unique dorsal profile that represents evolutionary experimentation in frill signalling near the origin of chasmosaurine ceratopsids and reinforces biogeographic differences between northern and southern faunal provinces in the Campanian of North America.  相似文献   

16.
Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare—cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 ± 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size—sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.  相似文献   

17.
The recent identification of hoatzins (Opisthocomiformes) in the Miocene of Africa showed part of the evolution of these birds, which are now only found in South America, to have taken place outside the Neotropic region. Here, we describe a new fossil species from the late Eocene of France, which constitutes the earliest fossil record of hoatzins and the first one from the Northern Hemisphere. Protoazin parisiensis gen. et sp. nov. is more closely related to South American Opisthocomiformes than the African taxon Namibiavis and substantiates an Old World origin of hoatzins, as well as a relictual distribution of the single extant species. Although recognition of hoatzins in Europe may challenge their presumed transatlantic dispersal, there are still no North American fossils in support of an alternative, Northern Hemispheric, dispersal route. In addition to Opisthocomiformes, other avian taxa are known from the Cenozoic of Europe, the extant representatives of which are only found in South America. Recognition of hoatzins in the early Cenozoic of Europe is of particular significance because Opisthocomiformes have a fossil record in sub-Saharan Africa, which supports the hypothesis that extinction of at least some of these “South American” groups outside the Neotropic region was not primarily due to climatic factors.  相似文献   

18.
Recent histological studies have revealed a diversity of dental features in Permo-Carboniferous tetrapods. Here, we report on the occurrence of plicidentine (infolded dentine around the base of the tooth root) in Sphenacodontia, the first such documentation in Synapsida, the clade that includes mammals. Five taxa were examined histologically, Ianthodon schultzei, Sphenacodon ferocior, Dimetrodon limbatus, Dimetrodon grandis, and Secodontosaurus obtusidens. The tooth roots of Ianthodon possess multiple folds, which is generally viewed as the primitive condition for amniotes. Sphenacodon and D. limbatus have distinctive “four-leaf clover”-shaped roots in cross section, whereas Secodontosaurus has an elongate square shape with only subtle folding. The most derived and largest taxon examined in this study, D. grandis, has rounded roots in cross section and therefore no plicidentine. This pattern of a loss of plicidentine in sphenacodontids supports previous functional hypotheses of plicidentine, where teeth with shallow roots require folds to increase the area of attachment to the tooth-bearing element, whereas teeth with long roots do not. This pattern may also reflect differences in diet between co-occurring sphenacodontids as well as changes in feeding niche through time, specifically in the apex predator Dimetrodon.  相似文献   

19.
Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335–340, 2003; Hu et al. Nature 461:640–643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.  相似文献   

20.
A temnospondyl ilium from the uppermost Toutunhe Formation (Middle Jurassic, Callovian) of the southern Junggar Basin is described. Among the known temnospondyls it is very unusual in morphology because of its very long and slender shaft. It compares closely only to the ilium of one of the latest known trematosaurids from the Ladinian of southern Germany. The Toutunhe Formation has also yielded vertebrae and skull fragments of temnospondyls which belong to the brachyopid Gobiops from the Upper Jurassic of Mongolia. Brachyopoid ilia do not, however, display a morphology similar to that of the new specimen. It is therefore concluded that this specimen represents a second taxon of temnospondyl from the Toutunhe Formation, which probably represents the latest surviving trematosauroid. The Trematosauroidea, which was hitherto exclusively known from the Lower to early Upper Triassic, therefore joins the Brachyopoidea – and possibly the Capitosauroidea – as another group of temnospondyls which survived the end-Triassic mass extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号