首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.

Background

This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5???M.

Methods

Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5???M As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants.

Results

The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux.

Conclusions

The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.  相似文献   

2.

Purpose

Arsenic, a toxic metalloid in drinking water, has become a major threat for human beings and other organisms. In the present work, attempts have been made to remove arsenate from the synthetic as well as natural water of Ballia district, India by electrocoagulation method. Efforts have also been made to optimize the various parameters such as initial arsenate concentration, pH, applied voltage, processing time, and working temperature.

Method

Electrocoagulation is a fast, inexpensive, selective, accurate, reproducible, and eco-friendly method for arsenate removal from groundwater. The present paper describes an electrocoagulation method for arsenate removal from groundwater using iron and zinc as anode and cathode, respectively.

Results

The maximum removal of arsenate was 98.8% at 2.0?mg?L?1, 7.0, 3.0?V, 10.0?min, and 30°C as arsenate concentration, pH, applied voltage, processing time, and working temperature, respectively. Relative standard deviation, coefficient of determination (r 2), and confidence limits were varied from 1.50% to 1.59%, 0.9996% to 0.9998%, and 96.0% to 99.0%, respectively. The treated water was clear, colorless, and odorless without any secondary contamination. The developed and validated method was applied for arsenate removal of two samples of groundwater of Ballia district, U.P., India, having 0.563 to 0.805?mg?L?1, arsenate concentrations.

Conclusions

The reported method is capable for the removal of arsenate completely (100% removal) from groundwater of Ballia district. There was no change in the groundwater quality after the removal of arsenate. The treated water was safe for drinking, bathing, and recreation purposes. Therefore, this method may be the choice of arsenate removal from natural groundwater.  相似文献   

3.

Introduction

Ceratophyllum demersum L. is a widespread submerged macrophyte in aquatic environments.

Methods

Simulation experiments were conducted in the laboratory to investigate arsenic (As) accumulation, speciation, and efflux of C. demersum exposed to arsenate and arsenite solutions.

Results

Plant shoots showed a significant accumulation of As with a maximum of 862 and 963???g?As?g?1 dry weight after 4?days of exposure to 10???M arsenate and arsenite, respectively. Regardless of whether arsenate or arsenite was supplied to the plants, arsenite was the predominant species in plant shoots. Furthermore, a dramatically higher influx rate of arsenate compared with arsenite was observed in C. demersum exposed to As solutions without the addition of phosphate (P). Arsenate uptake was considerably inhibited by P in this study, suggesting that arsenate is taken up by C. demersum via the phosphate transporters. However, arsenite uptake was unaffected by P and markedly reduced in the presence of glycerol and antimonite (Sb), indicating arsenite shares the aquaporin transport pathway. In addition, C. demersum rapidly reduces arsenate to arsenite in the shoot of the plant and extrudes most of them (>60?%) to the external solutions. The efflux of arsenite was much higher than that of arsenate; the former is supposed to be both active and passive processes, and the latter through passive leakage.

Conclusion

C. demersum is a strong As accumulator and an interesting model plant to study As uptake and metabolism due to the lack of a root-to-shoot translocation barrier.  相似文献   

4.
Evaluation of olive oil mill wastewater toxicity on spinach   总被引:1,自引:1,他引:0  

Background, aim, and scope

Olive oil mill wastewater (OMW), a by-product of the olive oil extraction process, is annually produced in huge amounts in olive-growing areas and represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:20 and 1:10) on spinach plants in order to evaluate OMW dilutions as a low-cost alternative method for the disposal of this waste.

Materials and methods

The effects of OMW dilutions were evaluated on seed germination, shoot and root elongation, biomass production, nutrient uptake and translocation, ascorbic acid content, polyphenols, photosynthetic pigments, and photosynthetic performance of spinach.

Results

Plant biomass was more affected than plant height and total chlorophyll; carotenoid and ascorbic acid content progressively decreased with decreasing OMW dilution. Exposure to both OMW dilutions resulted in overaccumulation of total polyphenols, which were negatively correlated to plant biomass and nutrients. Nutrient (Fe, Ca, and Mg) content was insufficient leading to reduced growth. Water use efficiency decreased mainly due to decreased CO2 assimilation rate rather than to a decline of transpiration rate. Disturbances in photosystem II (PSII) photochemical efficiency could be better envisaged by the ratio between variable fluorescence and initial fluorescence (Fv/Fo), which showed much greater amplitude than the maximal photochemical efficiency of PSII photochemistry (Fv/Fm).

Conclusions

From the data obtained, it is suggested that 1:20 OMW dilutions are still phytotoxic and that higher OMW dilutions should be used in order to use this waste for the irrigation of spinach plants.  相似文献   

5.

Introduction

The copper bioaccumulation by the floating Lemna minor and by the completely submerged Ranunculus tricophyllus as a function of exposure time and copper concentration was studied, with the aim of proposing these species as environmental biosensors of the water pollution.

Results

The results show that both these aquatic angiosperms are good indicators of copper pollution because the copper uptake is the only function of metal concentration (water pollution).

Conclusion

Uptake behavior is reported as a function of the time and concentration, based on the results of a 3-year study. Kinetic evaluations are proposed.  相似文献   

6.

Background

In this paper, batch removal of hexavalent chromium from aqueous solutions by Araucaria heterophylla leaves was investigated. The batch experiments were conducted to study the adsorption of metal species and effect of different pH, contact time, metal concentration, biosorbent concentration, and adsorption capacity.

Method

Freundlich and Langmuir??s isotherm model were used to describe the adsorption behavior, and the experimental results fitted Freundlich model well.

Results

The adsorption efficiency observed for all chromium concentrations, i.e., 1, 3, 5, and 10?mg/L was 100% and the equilibrium was achieved in 30?min for 1 and 3?mg/L, whereas for 5 and 10?mg/L, it was less than 60?min. FTIR spectra was taken to identify functional groups involved in the biosorption.

Conclusion

Thus, Araucaria leaves can be considered as one of the cheap and efficient biosorbent for toxic hexavalent chromium removal from natural or wastewaters.  相似文献   

7.

Purpose

In the reservoir created in the reclaimed land in Isahaya Bay, Japan, Microcystis aeruginosa, which produces microcystins (MCs), bloomed every year, and the water with high levels of MCs in the reservoir has been often drained to Isahaya Bay to adjust the water level. The principal aims of this study are to clarify the water conditions suitable for blooming of M. aeruginosa in the reservoir, to follow the amount of distribution of MCs inside and outside the reservoir, and to discuss how blooming of M. aeruginosa is controlled in the reservoir and how MCs produced by Microcystis spread or accumulate in the aquatic environment.

Method

We monitored the water quality (temperature, salinity, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus) in the reservoir with seasonal blooming of microalgae including phytoplankton and M. aeruginosa using the concentrations of chlorophyll ?? and MCs, respectively, and collected the surface sediment in the reservoir and the bay to determine the MC content using the ELISA method.

Result

M. aeruginosa bloomed in extremely low DIN conditions of the water in warm seasons (spring and late summer to autumn). The year-mean standing stock of MCs was approximately 34.5?kg in the water and 8.4?kg in the surface sediment in the reservoir. Approximately 64.5?kg of MCs was discharged with the effluent to the bay in a year.

Conclusion

Since a large amount of MCs always suspends in the water in the reservoir and it has been discharged to the bay, suspension-feeding animals are exposed most seriously to the high levels of MCs occurring in these areas. We need to pay attention to the danger of widespread dispersal of MCs and biological concentration of MCs by fish and clam inside and outside the reservoir.  相似文献   

8.

Background and purpose

The biosorption of Cr(VI) from aqueous solution has been studied using free and immobilized Pediastrum boryanum cells in a batch system. The algal cells were immobilized in alginate and alginate?Cgelatin beads via entrapment, and their algal cell free counterparts were used as control systems during biosorption studies of Cr(VI).

Methods

The changes in the functional groups of the biosorbents formulations were confirmed by Fourier transform infrared spectra. The effect of pH, equilibrium time, initial concentration of metal ions, and temperature on the biosorption of Cr(VI) ion was investigated.

Results

The maximum Cr(VI) biosorption capacities were found to be 17.3, 6.73, 14.0, 23.8, and 29.6?mg/g for the free algal cells, and alginate, alginate?Cgelatin, alginate?Ccells, and alginate?Cgelatin?Ccells at pH?2.0, which are corresponding to an initial Cr(VI) concentration of 400?mg/L. The biosorption of Cr(VI) on all the tested biosorbents (P. boryanum cells, alginate, alginate?Cgelatin, and alginate?Ccells, alginate?Cgelatin?Ccells) followed Langmuir adsorption isotherm model.

Conclusion

The thermodynamic studies indicated that the biosorption process was spontaneous and endothermic in nature under studied conditions. For all the tested biosorbents, biosorption kinetic was best described by the pseudo-second-order model.  相似文献   

9.

Purpose

The objective of this study was to determine the removal of zinc and copper by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus and to investigate changes of algal ultrastructure and photosynthetic pigment.

Methods

Algal cells were exposed for 8 days to different initial zinc or copper concentrations. Heavy metal concentrations were detected by an atomic absorption spectrophotometer. Algal growth, ultrastructure, and photosynthetic pigment were analyzed by a microplate reader, transmission electron microscope, and spectrophotometer, respectively.

Results

Low zinc and copper concentrations induced increase in algal growth, whereas application of high zinc and copper concentrations suppressed the growth of both algae. High metal concentrations also decreased the photosynthetic pigments and destroyed algal cell ultrastructure. The zinc removal efficiency by both algae increased rapidly during the first day and thereafter remained nearly constant throughout the experiment. The copper removal efficiency by both algae increased slowly during the whole experimental periods. In all cultures, the quantity of both metals removed intracellularly was much lower than the adsorbed quantity on the cell surface.

Conclusions

Both strains of the microalgae had proven effective in removing zinc and copper from aqueous solutions, with the highest removal efficiency being near 100%. In addition, C. pyrenoidosa appeared to be more efficient than S. obliquus for removing copper ions. On the contrary, S. obliquus appeared to be more efficient than C. pyrenoidosa for removing zinc ions.  相似文献   

10.

Purpose

The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B.

Methods

Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models.

Results

The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R 2?=?0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate.

Conclusion

Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83?mg/L, electrode surface area 15?cm2, voltage 14.19?V, and treatment time of 34.58?min.  相似文献   

11.

Introduction

The toxic effect of the oxidation hair dyes on Phanerochaete chrysosporium was investigated by exposure of this fungus in a nitrogen-limited culture medium to various concentrations of the oxidation hair dyes.

Results

The results showed that both the size and the dry weight of the mycelial pellets of P. chrysosporium could be reduced when the concentration of the oxidation hair dyes was higher than 300?mg/L. By using the AFLP analysis and the UPGMA dendrogram, the DNA damage of P. chrysosporium by the oxidation hair dyes was also detected. Comparing with that in the control, the percent polymorphism under different concentrations of the oxidation hair dyes increased. In the meantime, the DNA similarity was decreased, which meant that the DNA damage was aggravated with an increase in the concentrations of the oxidation hair dyes.

Conclusion

Thus, as an environmental pollutant, the oxidation hair dyes have a toxic effect on P. chrysosporium at both cellular and molecular levels.  相似文献   

12.

Background, aim and scope

The influence of pH (range 6.5–8.5) on the uptake of Zn, Cd, Pb, Cu, Ni, Cr, Hg, and As by juveniles of the clam Ruditapes philippinarum was examined in order to understand whether variation in sediment pH has significant repercussions on metal bioaccumulation.

Materials and methods

Clams were exposed to sediments collected in three locations in the Gulf of Cadiz (Huelva, Guadalquivir and Bay of Cadiz) and to contaminated particles derived from an accidental mining spill in Spain.

Results

With a notable exception of metal Cd, the concentration of metals within clams significantly increased (p?<?0.1) when sediment pH was lowered by one or two units. Moreover, the magnitude of this effect was dependent on the type of sediment contamination.

Discussion

Lower pH increases metal solubility and reduces or invert the metal sorption of metals to sediments. Increases in free metal ions in water favors metal uptake by clams, hence pH is an important factor controlling the mobility of these metals within sediments and their subsequent bioaccumulation within biota. Although sediment-water exchange of Cd can increase with acidification, this excess may be counterbalanced by the presence of ligands in seawater preventing the uptake by organism. Besides chlorines, Cd has also an affinity with carbonates and other ligands present in sea water. These Cd-carbonate complexes may reduce the bioavailable to organisms.

Conclusions

These results highlight the potential implications of sediment acidification, either due to the storage excess of organic matter or to the forced capture of CO2, on the increasing metal availability to benthic organisms.

Recommendations and perspectives

This kind of studies should be increased to address the influence of acidification in the behavior, bioavailability, toxicity, and risk assessment of contaminants associated with sediments either above sub-seabed geological formations in marine environments or in high enriched by organic matter in estuarine areas. Recently, the capture of CO2 in marine environments has been approved and started; it is necessary to address the potential impacts associated with leakages or other events occurring during the procedure of injection and storage of CO2.  相似文献   

13.

Goal, Scope and Background

Elevated concentrations of copper in the environment result in accumulation of the metal in plants and cause an increase in reactive oxidative species (ROS). The first response to elevated amounts of ROS is increased levels of enzymatic and non-enzymatic antioxidants that reduce oxidative stress. The aim of our study was to evaluate the early stages of antioxidative responses to the low copper concentrations usually present in moderately polluted environments. In addition, some other parameters were examined to evaluate the effect of copper on plants.

Methods

Duckweed (Lemna minor L.) was exposed to different concentrations of copper sulphate for up to 24 hours. Glutathione concentration and enzymatic activities of catalase, guaiacol peroxidase and glutathione reductase were measured spectrophotometrically. Additionally, delayed and prompt chlorophyll fluorescence was measured by luminometry and fluorometry, respectively. The accumulation of copper in plants exposed for 24 hours to various concentrations of copper sulphate was measured by flame atomic absorption spectrophotometry.

Results

The treatment of plants with copper sulphate resulted in an immediate decrease of the glutathione pool, which was replenished after 24 hours at CuSO4 concentrations lower than 2 μM. Higher CuSO4 concentrations caused a decrease of reduced glutathione. The responses of the antioxidant enzymes glutathione reductase, guaiacol peroxidase and catalase to CuSO4 differed during the first six hours of exposure, but their enzyme activities all increased after 24 hours of exposure. All these enzymes displayed biphasic activity curves with maximum values between 0.5 μM and 1 μM CuSO4. The response of guaiacol peroxidase was the most pronounced and statistically significantly specific and that of catalase the least. Delayed chlorophyll fluorescence decreased after exposure to 1 μM CuSO4, but no significant effect on maximum quantum yield of photosystem II (Fv/Fm) was observed. L. minor accumulated relatively high concentrations of copper. The accumulation rate was higher at lower concentrations of copper in the test medium (up to 2 μM CuSO4) than at concentrations above 2 μM CuSO4.

Discussion

One of the most pronounced antioxidative responses to copper exposure was modified levels of oxidized and reduced forms of glutathione. The decrease of the glutathione pool is most probably coupled with induced production of phytochelatins. Antioxidative enzymes showed the biphasic enzyme activity characteristic of stress response. Guaiacol peroxidase exhibited the greatest significant increase of activity, even at higher CuSO4 concentrations at which the activity of catalase and glutathione reductase dropped. The intensity of delayed chlorophyll fluorescence decreased, indicating reduced photosynthesis of plants under stress. All the measured parameters showed that plants respond to even low copper concentrations very soon after exposure. The accumulation rate of copper in duckweed tissues indicates that L. minor is an accumulator species.

Conclusions

The synchronized and prompt inducibility of antioxidants indicates their involvement in a general plant defence strategy for coping with metal-induced oxidative stress. Glutathione concentration and guaiacol peroxidase activity were found to be the most sensitive of the early indicators of exposure to copper concentrations present in polluted water bodies.

Recommendation and Perspectives

The experimental design of the present study allowed us to compare the sensitivity of various methods and parameters for detecting plant responses to heavy metal-induced oxidative stress. The level of glutathione and the enzyme activities of guaiacol peroxidase and glutathione reductase could be used as a rapidly determined early warning system in toxicity studies.
  相似文献   

14.

Purpose

In this study, the effect of silver nanoparticles (AgNPs) on the photosynthetic performance of two green algae, Chlorella vulgaris and Dunaliella tertiolecta, was investigated at 25°C and 31°C.

Methods

To induce AgNPs effect, algal cells were exposed for 24?h to concentrations varying from 0 to 10?mg/L. The polyphasic OJIP fluorescence transient was used to evaluate photosystem II (PSII).

Results

We show that growth media and temperature had different effects in AgNPs agglomerates formation and Zeta potential. When temperature conditions change, inhibitory effect of AgNPs also undergoes changes. Increase of temperature induced higher altering effects to PSII quantum yield, primary photosynthetic electron transport, and consequently higher decrease of total photosynthetic performance if compared to AgNPs effect alone. AgNPs has a negative effect on D. tertiolecta compared to C. vulgaris.

Conclusion

We conclude that temperature tends to enhance the toxic effects on aquatic alga and these alterations might have serious consequences on ecosystem equilibrium and aquatic plant communities.  相似文献   

15.

Background, aim and scope

Agrochemicals could reach aquatic ecosystems and damage ecosystem functionality. Natural formicide could be an alternative to use in comparison with the more toxic formicides available on the market. Thus, the objective of this study was to assess the ecotoxicity of the new natural formicide Macex? with a battery of classical aquatic ecotoxicity tests.

Material and methods

Bacteria (Aliivibrio fischeri), algae (Pseudokirchneriella subcapitata), hydra (Hydra attenuata), daphnids (Daphnia magna), and fish (Danio rerio) tests were performed in accordance with international standardized methodologies.

Results

In the range of formicide concentrations tested (0.03 to 2.0?g?L?1) EC50 values varied from 0.49 to >2.0?g?L?1, with P. subcapitata being the most sensitive species and H. attenuata and D. rerio the most tolerant species to this product in aqueous solutions.

Conclusions

This new formicide preparation can be classed as a product of low toxicity compared to the aquatic ecotoxicity of the most common commercialized formicides.  相似文献   

16.

Purpose

The immunotoxicities of oil and its components on fish immunities have been investigated, but there is little literature on the recovery of the fish from the immune suppression. Therefore, the recovery of Japanese flounder Paralichthys olivaceus from an immunosuppressive effect due to heavy oil (HO) exposure was investigated in this study.

Methods

Fish were exposed to HO at a concentration of 0.385?g/L for 2?days, while control fish received no exposure. Seven fish were sampled at 0, 3, 7, and 14?days post-exposure. The respiratory rate was measured everyday as an indicator of the acute effect of HO exposure. Fish serum was collected and used for antibacterial activity assay against Edwardsiella tarda. Expression changes of respiratory and immune-related genes were evaluated by real-time PCR.

Results and discussion

The respiratory rate was significantly increased in the HO-exposed group until 4?days post-exposure. A respiratory-related gene, ??-hemoglobin, was also significantly downregulated in the spleen both at 0 and 7?days post-exposure and kidney at 3?days post-exposure in HO-exposed fish. Immunotoxicity, including suppression of antibacterial activities and downregulation of the IgM gene, was observed in HO-exposed fish until 3?days post-exposure, but not after that time. From these results, we conclude that the fish likely return to normal status around 1?week.  相似文献   

17.

Introduction

The halophyte Halimione portulacoides collected in a polluted area of the river Sado estuary (Portugal) and obtained from hydroponic cultures was used to evaluate the compartmentation of Zn and its preferential binding sites. In parallel, we tried to assess if the minimum available Zn concentration found in marsh soil induces changes at the ultrastructural level.

Materials and methods

A sequential extraction method was used to study the Zn compartmentation within the cell. Both dried plant samples and extracts/residues from compartmentation studies were digested by HNO3?CHClO4 (4:1) until dryness and analyzed by atomic absorption spectrophotometry. Segments of young leaves, previously exposed to Zn were fixed in glutaraldehyde and osmium tetroxide. Ultrathin sections were stained and examined by transmission electron microscopy at 80 kV.

Results and discussion

Proteins and carbohydrates of the cell walls constitute preferential binding sites of Zn, containing between 25% and 33% and between 30% and 40% of the total, respectively. Hydroponic plants accumulate Zn in their leaves up to (194 ??g g?1) without visible damage or changes in the protein and chlorophyll concentrations, compared with the controls. Chlorenchyma chloroplasts of Zn-treated plants exhibited an unusual number of starch grains, which can be seen as an alert mechanism.

Conclusions and perspectives

Although so far the levels of Zn in the leaves within the studied area have not reached high values, monitoring them remains a priority. Also, issues related with starch synthesis and organic ligands must be evaluated. The understanding of the predictable behavior of this halophyte is our main goal, and the results here presented can contribute to this achievement.  相似文献   

18.
The present study aims to assess the level and possible sources of organic and inorganic pollutants in Mahableshwar city in Western part of India and their effect on naturally growing foliose lichen Remototrachyana awasthii (Hale & Patw.) Divakar & A. Crespo. This lichen species growing abundantly in the area was collected from eight different sites on the basis of anthropogenic activities detected in the area. The concentration of inorganic heavy metals (Al, As, Cd, Cr, Fe, Pb, Mn, and Zn) and polycyclic aromatic hydrocarbons (PAHs) were analyzed and correlated with photosynthetic pigments (Chl a, Chl b, total chlorophyll, and carotenoid) together with chlorophyll degradation and protein contents. The concentration of most of the metals at different sites was significantly greater than at the control site (P?<?0.001). The highest metal content was found at Bus Stand and Panchgani, a tourist place that experiences heavy traffic activities. The concentration of PAHs, particularly of two-and three-ringed PAHs, was also found to be the highest in samples collected at Bus Stand area. The chlorophyll degradation and protein content were found to be the most sensitive parameters to assess the vitality of lichen thallus against wide range of air pollutants. The effectiveness of R. awasthii as a biomonitor will be investigated in the near future by comparing this species with other biomonitors.  相似文献   

19.

Purpose

In this study, we investigated the effects of maternal transfer of bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) during gestational and weaning periods on gonadal development of male offspring.

Methods

Pregnant CD-1 mice were administered by gavages in corn oil with 0.1, 1, or 10 mg/kg/day of BPA and DEHP from gestational days (GD1?C21) to the weaning period (postnatal days (PND) 1?C21).

Results

Our data indicated that the exposure significantly reduced the male-to-female sex ratio and the sizes of the gonads of male pups as recorded at PND15. The testes of the perinatally exposed male pups were developed less and the expression levels of testicular anti-mullerian hormone, androgen receptor, cyclin A, and StAR were significantly lesser than the control male pups. The less developed testes were accompanied with significant reductions in the expression levels of Gnrh and Fsh at the hypothalamic?Cpituitary levels. The negative effects were found to be persistent in the sexually mature pups at PND42.

Conclusion

Our data reveal that the maternal transfer of BPA and DEHP may impose negative influence on the development and functions of the reproductive system of male pups.  相似文献   

20.

Purpose

This study had an objective to identify the most potent chromium-resistant bacteria isolated from tannery effluent and apply them for bioremediation of chromium in tannery effluents.

Methods

Two such strains (previously characterized and identified by us)??Enterobacter aerogenes (NCBI GenBank USA Accession no. GU265554) and Acinetobacter sp. PD 12 (NCBI GenBank USA Accession no. GU084179)??showed powerful chromium resistivity and bioremediation capabilities among many stains isolated from tannery waste. Parameters such as pH, concentration of hexavalent chromium or Cr (VI), and inoculum volume were varied to observe optimum bioconversion and bioaccumulation of Cr (VI) when the said strains were grown in M9 minimal salt media. E. aerogenes was used to remediate chromium from tannery effluents in a laboratory level experiment.

Results

Observation by Scanning Electron Microscope and chromium peak in Energy Dispersive X-ray Spectroscopic microanalysis revealed that E. aerogenes helped remediate a moderate amount of Cr (VI) (8?C16?mg?L?1) over a wide range of pH values at 35?C37°C (within 26.05?h). High inoculum percentage of Acinetobacter sp. PD 12 also enabled bioremediation of 8?C16?mg?L?1 of Cr (VI) over a wide range of temperature (25?C37°C), mainly at pH?7 (within 63.28?h). The experiment with real tannery effluent gave very encouraging results.

Conclusion

The strain E. aerogenes can be used in bioremediation of Cr (VI) since it could work in actual environmental conditions with extraordinarily high capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号