首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Invasive species are a global threat to biodiversity and the functioning of natural ecosystems. Here, we report on a two-year experiment aimed at elucidating the combined and relative effects of three key controls on plant invasions: propagule supply, soil nitrogen (N) availability, and herbivory by native insects. We focus on the exotic species Lespedeza cuneata, a Rank 1 invasive species. Propagule supply and soil N-availability interacted to control the density and foliar cover of L. cuneata. In low N plots, density and foliar cover of L. cuneata were higher in the propagule addition plots than in the plots to which propagules were not added. Surprisingly, this interaction was significant only when the abundance of herbivores was experimentally reduced. This experiment provides evidence that native insect herbivores mediate the interactive effects of propagule supply and resources on invasion by a widespread invasive plant species.  相似文献   

2.
Barber NA  Adler LS  Theis N  Hazzard RV  Kiers ET 《Ecology》2012,93(7):1560-1570
Herbivores affect plants through direct effects, such as tissue damage, and through indirect effects that alter species interactions. Interactions may be positive or negative, so indirect effects have the potential to enhance or lessen the net impacts of herbivores. Despite the ubiquity of these interactions, the indirect pathways are considerably less understood than the direct effects of herbivores, and multiple indirect pathways are rarely studied simultaneously. We placed herbivore effects in a comprehensive community context by studying how herbivory influences plant interactions with antagonists and mutualists both aboveground and belowground. We manipulated early-season aboveground herbivore damage to Cucumis sativus (cucumber, Cucurbitaceae) and measured interactions with subsequent aboveground herbivores, root-feeding herbivores, pollinators, and arbuscular mycorrhizal fungi (AMF). We quantified plant growth and reproduction and used an enhanced pollination treatment to determine if plants were pollen limited. Increased herbivory reduced interactions with both antagonists and mutualists. Plants with high levels of early herbivory were significantly less likely to suffer leaf damage later in the summer and tended to be less attacked by root herbivores. Herbivory also reduced pollinator visitation, likely due to fewer and smaller flowers, and reduced AMF colonization. The net effect of herbivory on plant growth and reproduction was strongly negative, but lower fruit and seed production were not due to reduced pollinator visits, because reproduction was not pollen limited. Although herbivores influenced interactions between plants and other organisms, these effects appear to be weaker than the direct negative effects of early-season tissue loss.  相似文献   

3.
Abstract:  Despite many successful reintroductions of large mammalian herbivores throughout the world, remarkably little attention has focused on how these actions affect native and exotic vegetation at reintroduction sites. One such herbivore is tule elk ( Cervus elaphus nannodes ), which was on the brink of extinction in the mid 1800s, but now has numerous stable populations due to intensive reintroduction efforts. Here, we summarize results from a 5-year exclosure experiment that explored the effects of tule elk on a coastal grassland in northern California. Elk significantly altered the species composition of this community; the response of annual species (dominated heavily by exotic taxa) was dramatically different from perennial species. Elk herbivory increased the abundance and aboveground biomass of native and exotic annuals, whereas it either had no effect on or caused significant decreases in perennials. Elk also decreased the cover of native shrubs, suggesting that these herbivores play an important role in maintaining open grasslands. In addition, elk significantly reduced the abundance and biomass of a highly invasive exotic grass , Holcus lanatus, which is a major problem in mesic perennial grasslands. Our results demonstrate that the successful reintroduction of a charismatic and long-extirpated mammal had extremely complex effects on the plant community, giving rise to both desirable and undesirable outcomes from a management perspective. We suspect that these kinds of opposing effects are not unique to tule elk and that land managers will frequently encounter them when dealing with reintroduced mammals.  相似文献   

4.
Parker IM  Gilbert GS 《Ecology》2007,88(5):1210-1224
An important question in the study of biological invasions is the degree to which successful invasion can be explained by release from control by natural enemies. Natural enemies dominate explanations of two alternate phenomena: that most introduced plants fail to establish viable populations (biotic resistance hypothesis) and that some introduced plants become noxious invaders (natural enemies hypothesis). We used a suite of 18 phylogenetically related native and nonnative clovers (Trifolium and Medicago) and the foliar pathogens and invertebrate herbivores that attack them to answer two questions. Do native species suffer greater attack by natural enemies relative to introduced species at the same site? Are some introduced species excluded from native plant communities because they are susceptible to local natural enemies? We address these questions using three lines of evidence: (1) the frequency of attack and composition of fungal pathogens and herbivores for each clover species in four years of common garden experiments, as well as susceptibility to inoculation with a common pathogen; (2) the degree of leaf damage suffered by each species in common garden experiments; and (3) fitness effects estimated using correlative approaches and pathogen removal experiments. Introduced species showed no evidence of escape from pathogens, being equivalent to native species as a group in terms of infection levels, susceptibility, disease prevalence, disease severity (with more severe damage on introduced species in one year), the influence of disease on mortality, and the effect of fungicide treatment on mortality and biomass. In contrast, invertebrate herbivores caused more damage on native species in two years, although the influence of herbivore attack on mortality did not differ between native and introduced species. Within introduced species, the predictions of the biotic resistance hypothesis were not supported: the most invasive species showed greater infection, greater prevalence and severity of disease, greater prevalence of herbivory, and greater effects of fungicide on biomass and were indistinguishable from noninvasive introduced species in all other respects. Therefore, although herbivores preferred native over introduced species, escape from pest pressure cannot be used to explain why some introduced clovers are common invaders in coastal prairie while others are not.  相似文献   

5.
Gough L  Moore JC  Shaver GR  Simpson RT  Johnson DR 《Ecology》2012,93(7):1683-1694
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.  相似文献   

6.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

7.
Protection from Natural Enemies in Managing Rare Plant Species   总被引:1,自引:0,他引:1  
Abstract: Natural enemies such as pathogens, herbivores, and seed predators can substantially limit the abundance of plants, including rare species. Vulnerability to particular enemies is likely to differ between life-history stages. We hypothesized that short-term protection of juvenile plants from herbivores can be used to increase population growth of rare species and thus improve the probability of long-term persistence. Using the federally listed (threatened) Pitcher's thistle ( Cirsium pitcheri ) as a model, we experimentally excluded insect herbivores from juvenile rosettes to evaluate the potential benefits of deliberate insect control as a tool for management of rare species. Herbivore effects varied spatially across the local environment. Excluding insects in portions of the habitat where herbivory was high had direct benefits, including a 53% decrease in juvenile plant mortality (60% to 7%) and a 10-fold increase in seed production of juveniles that matured and flowered. In other areas, where herbivore-induced juvenile mortality was relatively low, excluding insects either increased seed production of plants that flowered or had no major effect. Our data also suggest indirect benefits to the metapopulation via potential improvement in dispersal among patches. Temporal variation in growing conditions occurred between years, suggesting that multiple-year exclusions would be most effective. Our study suggests that small–scale manipulation of often inconspicuous interactions between rare plants and their natural enemies can be an effective, relatively low-cost tool for the management and restoration of rare plant species.  相似文献   

8.
Allan E  van Ruijven J  Crawley MJ 《Ecology》2010,91(9):2572-2582
By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and diversity. Here we excluded foliar fungal pathogens from perennial grassland by using fungicide to determine the effect of natural levels of disease on an otherwise undisturbed plant community. Importantly, we excluded foliar fungal pathogens along with rabbits, insects, and mollusks in a full factorial design, which allowed a comparison of pathogen effects along with those of better studied plant enemies. This revealed that fungal pathogens substantially reduced aboveground plant biomass and promoted plant diversity and that this especially benefited legumes. The scale of pathogen effects on productivity and biodiversity was similar to that of rabbits and insects, but different plant species responded to the exclusion of the three plant enemies. These results suggest that theories of plant coexistence and management of biodiversity in grasslands should consider foliar fungal pathogens as potentially important drivers of community composition.  相似文献   

9.
10.
Many plant species defend themselves against herbivorous insects indirectly by producing and releasing induced volatiles to attract natural enemies of the herbivores. In this paper, we consider the recruitment of natural enemies attracted by plant-induced volatiles and introduce the An–Liu–Johnson–Lovett model into the Lotka–Volterra model in an attempt to add this missing vital link in tritrophic interaction. Increase in attraction strength of plant-induced volatiles to the natural enemy leads to high fluctuation amplitude of plant biomass and herbivore population. When the attack strength of natural enemies reaches a certain level, fluctuation amplitude of plant biomass and herbivore population will decrease and plant biomass will approach to its environmental carrying capacity. The simulation demonstrates that plant volatile compounds induced by insects have led to the introduction of a third tritrophic level, e.g., natural enemies, into the plant–herbivore system, resulting in the coexistence of plants, insects, and natural enemies during the evolution process.  相似文献   

11.
Schädler M  Brandl R  Haase J 《Ecology》2007,88(6):1490-1498
Interspecific competition between plants and herbivory by specialized insects can have synergistic effects on the growth and performance of the attacked host plant. We tested the hypothesis that competition between plants may also negatively affect the performance of herbivores as well as their top-down effect on the host plant. In such a case, the combined effects of competition and herbivory may be less than expected from a simple multiplicative response. In other words, competition and herbivory may interact antagonistically. In a greenhouse experiment, Poa annua was grown in the presence or absence of a competitor (either Plantago lanceolata or Trifolium repens), as well as with or without a Poa-specialist aphid herbivore. Both competition and herbivory negatively affected Poa growth. Competition also reduced aphid density on Poa. This effect could in part be explained by changes in the biomass and the nitrogen content of Poa shoots. In treatments with competitors, reduced aphid densities alleviated the negative effect of herbivory on above- and belowground Poa biomass. Hence, we were able to demonstrate an antagonistic interaction between plant-plant interspecific competition and herbivory. However, response indices suggested that antagonistic interactions between competition and herbivory were contingent on the identity of the competitor. We found the antagonistic effect only in treatments with T. repens as the competitor. We conclude that both competitor identity and the herbivore's ability to respond with changes in its density or activity to plant competition affect the magnitude and direction (synergistic vs. antagonistic) of the interaction between competition and herbivory on plant growth.  相似文献   

12.
Abstract: The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white‐tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white‐tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on plant abundance and provide evidence of the operation of multiple mechanisms in exotic plant invasion.  相似文献   

13.
Abstract:  Habitat loss and fragmentation can have strong negative impacts on populations of some native species. Spillover of generalist natural enemies from the surrounding landscape matrix is one mechanism potentially generating such effects, yet this has been rarely studied in insects. We examined the influence of habitat conversion to agriculture on the abundance and potential effects of predatory coccinellid beetles on native insect herbivores within 12 grassland remnants in central Nebraska (U.S.A.). Results of sweep sampling revealed that coccinellids were three to six times more abundant at native grassland sites embedded within cropland-dominated landscapes compared with control sites in grassland-dominated landscapes over the 3 years of the study. Exclusion experiments further demonstrated that predation intensity was strongly related to coccinellid abundances across sites and that coccinellids can dramatically reduce densities of a native aphid herbivore. In contrast to studies of specialized insect parasitoids, which have generally found reduced enemy pressure in fragmented landscapes, our results suggest that native herbivores may in some cases experience increased consumer pressure in landscapes with increasing habitat loss because of spillover of generalist predators from surrounding cropland habitats.  相似文献   

14.
Abstract:  Biological control with specialist, nonindigenous, herbivorous insects is an important option for controlling invasive exotic plants in wildlands and nature reserves. It is assumed that biological control agents will reduce the dominance of the target weed, thereby increasing the native diversity of the associated plant community. However, this hypothesis has rarely been tested. We introduced Aphthona nigriscutis into grassland sites infested with the invasive exotic species Euphorbia esula L. on a nature reserve in Montana (U.S.A.). Two sites with better soil had been treated previously with herbicide, whereas two other sites had not. We measured the density and biomass of Euphorbia vegetative and flowering stems and number of native and exotic shrubs, grass-like plants, and forbs in 48 microplots in Aphthona release and control macroplots at each site. After 5 years, Aphthona release was associated with a 33–39% decline in Euphorbia aboveground biomass compared with controls at all sites. Other effects of the biocontrol depended on the site. Biocontrol slowed the recovery of species diversity at the sites previously treated with herbicide but slowed the loss of diversity at sites without a history of herbicide. Biocontrol introduction was not associated with a disproportionate increase in nontarget exotic species. Release of Aphthona caused a decline in the biomass of flowering stems relative to controls at good-soil, previous-herbicide sites but was associated with a relative increase in flower stem mass at poor-soil, no-herbicide sites. Our results suggest that biocontrol reductions in weed dominance will not always be associated with increased species diversity. More emphasis should be placed on conserving desirable communities and less on simple weed control. Monitoring of community-level effects should accompany biocontrol introductions on nature reserves.  相似文献   

15.
A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e.g., alkaloids, glucosinolates) are differentially allocated between above- and belowground parts. Based on a meta-analysis of induced defense studies we conclude that: (1) foliar induction generates strong responses in leaves, but much weaker responses in roots, and (2) root induction elicits responses of equal magnitude in both leaves and roots. We discuss the importance of this asymmetry and the paradox of cross-system induction in relation to optimal defense theory and interactions between above- and belowground herbivory.  相似文献   

16.
Insects feeding on aboveground and belowground tissues can influence each other through their shared plant and this is often mediated by changes in plant chemistry. We examined the effects of belowground root fly (Delia radicum) herbivory on the performance of an aboveground herbivore (Plutella xylostella) and its endoparasitoid wasp (Cotesia vestalis). Insects were reared on three populations of wild cabbage (Brassica oleracea) plants, exhibiting qualitative and quantitative differences in root and shoot defense chemistry, that had or had not been exposed to root herbivory. In addition, we measured primary (amino acids and sugars) and secondary [glucosinolate (GS)] chemistry in plants exposed to the various plant population-treatment combinations to determine to what extent plant chemistry could explain variation in insect performance variables using multivariate statistics. In general, insect performance was more strongly affected by plant population than by herbivory in the opposite compartment, suggesting that population-related differences in plant quality are larger than those induced by herbivory. Sugar profiles were similar in the three populations and concentrations only changed in damaged tissues. In addition to population-related differences, amino acid concentrations primarily changed locally in response to herbivory. Whether GS concentrations changed in response to herbivory (indole GS) or whether there were only population-related differences (aliphatic GS) depended on GS class. Poor correlations between performance and chemical attributes made biological interpretation of these results difficult. Moreover, trade-offs between life history traits suggest that factors other than food nutritional quality contribute to the expression of life history traits.  相似文献   

17.
氮是湿地植物生长必不可少的营养元素之一,但当外源氮输入超出植物生长需要时,氮素将抑制植物生长。不同植物对氮输入的响应不同,同一植物不同器官对氮输入的响应也不一致。为了探讨氮输入对湿地植物生长和氮吸收的影响机制,本文选取滇西北典型湖泊湿地纳帕海湖滨挺水植物茭草(Zizania caduciflora)和水葱(Scirpus validus)为对象,通过控制实验,研究了3个不同氮输入水平[0 g·m-2·a-1(对照,CK)、20 g·m-2·a-1(N20)、40 g·m-2·a-1(N40)]对茭草和水葱生物量积累、根冠比、氮吸收的影响。结果表明:培养期内,茭草地上生物量始终表现为N40〉N20〉CK,即氮输入促进茭草地上生物量积累;而水葱地上生物量随培养时间不同而发生变化,培养早期N20处理促进水葱地上生物量积累,N40处理抑制水葱地上生物量积累。茭草地下生物量表现为N40〉CK〉N20,即氮输入不足抑制茭草地下生物量积累,足够氮输入促进茭草地下生物量积累;水葱地下生物量表现为CK〉N20〉N40,即氮输入抑制水葱地下生物量积累。植物地上部分和地下部分生长对氮输入的响应也不一致,导致植物根冠比发生变化,茭草根冠比表现为N20  相似文献   

18.
Invasive plant species can be controlled by introducing natural enemies (insect herbivores) from their native range. However, such introduction entails the risk that the introduced herbivores attack indigenous plant species in the area of introduction. Here, we study the effect of spillover of a herbivore from a managed ecosystem compartment (agriculture) to a natural compartment (non-managed) and vice versa. In the natural compartment, an indigenous plant species is attacked by the introduced herbivores, whereas another indigenous plant species, which competes with the first, is not attacked. The combination of competition and herbivory may result in extinction of the attacked wild plant species. Using a modelling approach, we determine model parameters that characterize the risk of extinction for a wild plant species. Risk factors include: (1) a high attack rate of the herbivores on the wild non-target species, (2) niche overlap expressed as strong competition between the attacked non-target species and its competitor(s), and (3) factors favouring large spillover from the managed ecosystem compartment to the natural compartment; these include (3a) a high dispersal ability, and (3b) a moderate attack rate of the introduced herbivore on the target species, enabling large resident populations of the insect herbivore in the managed compartment. The analysis thus indicates that a high attack rate on the target species, which is a selection criterion for biocontrol agents with respect to their effectiveness, also mitigates risks resulting from spillover and non-target effects. While total eradication of an invasive plant species is not possible in the one-compartment-one-plant-one-herbivore system, natural enemy spillover from a natural to a managed compartment can make the invasive weed go extinct.  相似文献   

19.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

20.
Lau JA  McCall AC  Davies KF  McKay JK  Wright JW 《Ecology》2008,89(3):754-762
Biotic interactions, such as competition and herbivory, can limit plant species ranges to a subset of edaphically suitable habitats, termed the realized niche. Here we explored the role that herbivores play in restricting the niche of serpentine ecotypes of the native California annual Collinsia sparsiflora. We planted seeds from four populations into a range of natural field environments that varied in the presence/absence of naturally occurring C. sparsiflora and in predicted suitability for growth and survival of the serpentine ecotype of C. sparsiflora. Path analysis was then used to model the direct and herbivore-mediated indirect effects of environmental variables on the survival of C. sparsiflora serpentine ecotypes. We found that C. sparsiflora received more herbivory when planted into areas where serpentine ecotypes of C. sparsiflora were not predicted to persist, and that increased herbivory was associated with decreased survival, suggesting that herbivores may limit the distribution of C. sparsiflora serpentine ecotypes. Additionally, we demonstrated that edaphic environmental variables impacted the survival of C. sparsiflora serpentine ecotypes both directly and indirectly, by altering interactions with herbivores. These indirect effects were probably trait-mediated and probably occurred because edaphic factors may influence plant traits that, in turn, alter attractiveness to herbivores. Although the magnitude of direct effects exceeded the magnitude of indirect effects, many strong herbivore-mediated indirect effects were detected. Thus, interactions between the abiotic environment and insect herbivory contributed to restricting the niche of C. sparsiflora serpentine ecotypes to a subset of available habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号