首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
摘要:采用水培的方法,研究了不同浓度Mn(0.0003、0.5、1、2、4、8 mmol•L-1)对Mn超富集植物短毛蓼(Polygonum pubescens Blume)和水蓼(Polygonum hydropiper L.)叶片铵态氮、硝态氮、游离脯氨酸、可溶性蛋白质含量及氮素代谢关键酶:硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)和谷氨酸脱氢酶(GDH)活性的影响。结果表明,随着Mn处理浓度的增加,短毛蓼和水蓼的根、茎、叶中Mn含量显著增加(p < 0.05),在相同Mn处理浓度下短毛蓼中的Mn含量均大于同部位水蓼中的Mn含量。在Mn处理浓度小于1 mmol•L-1时,Mn对短毛蓼的株高、株重影响不明显,但对水蓼的影响显著(p < 0.05),表明短毛蓼比水蓼更耐Mn污染。Mn处理显著降低了短毛蓼硝态氮含量(p < 0.05),提高了可溶性蛋白质含量,8 mmol•L-1的Mn处理显著提高了水蓼硝态氮、铵态氮、可溶性蛋白质含量以及短毛蓼、水蓼游离脯氨酸含量,在Mn浓度为8 mmol•L-1时,短毛蓼、水蓼叶片中游离脯氨酸的含量分别为对照的1.18倍和1.68倍,表明游离脯氨酸在解Mn毒害过程中起重要作用。Mn引起了短毛蓼和水蓼氮素代谢关键酶活性的变化,显著降低了水蓼叶片NR、短毛蓼叶片GS活性(p < 0.05);在Mn处理浓度为1 mmol•L-1时,短毛蓼叶片NR活性最高,为对照的1.91倍,而2、4、8 mmol•L-1 Mn处理显著降低了短毛蓼和水蓼GOGAT活性(p<0.05)。另外,Mn处理显著提高了短毛蓼和水蓼叶片GDH活性(p < 0.05),在Mn处理浓度为8 mmol•L-1时,短毛蓼、水蓼叶片GDH的活性分别为对照的16.29倍和1.29倍。  相似文献   

2.
采用溶液培养法,设置3个氮浓度20、100、200 mg·L-1和3个NH_4~+/NO_3~-比1∶0、0.5∶0.5、0∶1,研究污水氮浓度和NH_4~+/NO_3~-比对粉绿狐尾藻去氮能力和植物体氮组分的影响.结果表明,粉绿狐尾藻的生物量在第1周增长最快,其中氮浓度20 mg·L-1、100 mg·L-1时,生物量以NH_4~+/NO_3~-=1∶0处理最大;氮浓度200 mg·L-1时,以NH_4~+/NO_3~-=0.5∶0.5处理最大.粉绿狐尾藻在第1周对总氮、铵态氮和硝态氮去除速率最高,且随氮浓度升高而增加;氮浓度20 mg·L-1时,铵态氮和硝态氮的去除率无显著差异,氮浓度100 mg·L-1、200 mg·L-1时硝态氮的去除率高于铵态氮.粉绿狐尾藻氮积累量及对水体和底泥氮去除的贡献率均随氮浓度升高而增加,其氮含量和积累量均以第1周增长最快,氮浓度20 mg·L-1时氮积累贡献率以NH_4~+/NO_3~-=0∶1最大,氮浓度100 mg·L-1、200 mg·L-1时以NH_4~+/NO_3~-=0.5∶0.5最大.粉绿狐尾藻体内蛋白质、氨基态氮和硝态氮的含量均随氮浓度的升高而增加,且蛋白质氨基态氮硝态氮;NH_4~+/NO_3~-为1∶0和0.5∶0.5时蛋白质含量较高,NH_4~+/NO_3~-=1∶0时氨基态氮含量最高,NH_4~+/NO_3~-=0∶1时硝态氮含量最高.由此说明,在试验范围内,粉绿狐尾藻的去氮能力随污水氮浓度升高而提高,可以用于高氮浓度污水修复;粉绿狐尾藻喜铵态氮,但在100 mg·L-1以上的高氮浓度下以硝铵等比时生长和去除氮能力最强;粉绿狐尾藻体内氮组分受硝铵比调节,蛋白氮比例最高,铵态氮和硝态氮则分别随污水NH+4和NO-3比升高而提高.  相似文献   

3.
不同Zn水平下辣椒体内Cd的积累、化学形态及生理特性   总被引:11,自引:6,他引:5  
采用盆栽试验研究了重金属Cd(20mg·kg-1)污染下,叶面喷施不同浓度Zn(0、100、200、400、600μmol·L-1)对辣椒生长、叶绿素含量、抗氧化酶活性以及辣椒体内Cd形态和积累量的影响.结果表明,在Zn≤400μmol·L-1范围内,辣椒叶、茎、根、果实干重及叶片叶绿素a、b含量随Zn浓度不断增加而增加;高量Zn(600μmol·L-1)抑制了辣椒的生长、降低了叶片叶绿素含量.在Zn≤400μmol·L-1范围内,辣椒叶SOD和CAT活性随Zn浓度增加而降低,辣椒叶的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性在400μmol·L-1Zn时达到最低,当Zn400μmol·L-1时,SOD和CAT活性呈上升趋势.叶面喷施Zn使辣椒茎、根及果实中Cd含量分别降低了2.7%~5.4%、7.5%~28.1%和7.6%~21.8%.与对照相比较,叶面喷施Zn的辣椒果实Cd总提取量、氯化钠提取态Cd、去离子水提取态Cd以及乙醇提取态Cd含量分别降低了7.7%~21.8%、4.11%~23.6%、54.5%~66.8%和4.8%~86.7%,但醋酸提取态和残渣态增加了28.0%~68.0%和12.6%~25.0%.  相似文献   

4.
氨基酸部分取代硝态氮对小白菜硝酸盐累积的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
采用水培试验研究了氨基酸和硫酸铵部分取代硝态氮对小白菜硝酸盐含量及营养品质的影响.结果表明,谷氨酸与谷氨酰胺等氮量配合(Glu+Gln)部分取代硝态氮对小白菜地上部鲜重和干重的影响较小,但谷氨酸(Glu)和硫酸铵[(NH4)2SO4]导致鲜重显著下降,并且Glu使干重也显著下降.氨基酸和硫酸铵部分取代硝态氮均降低小白菜可食部分的硝酸盐的含量,但氨基酸效果更好,依次为Glu>Gln>Glu+Gln;氨基酸部分取代硝态氮均促进小白菜对磷和钾养分的吸收,Gln促进氮的吸收,均提高地上部分的全氮、全磷和全钾的含量;氨基酸和硫酸铵部分取代硝态氮均使小白菜的品质有不同程度提高,其中可溶性糖的含量,除Glu+Gln处理外其他处理都显著高于对照,并以(NH4)2SO4效果最好;Glu能显著增加维生素C的含量,其他处理不显著;除Gln外,各处理均显著增加游离氨基酸的含量,并以Glu+Gln处理效果最佳;Glu和Gln显著增加可溶性蛋白的含量,而(NH4)2SO4和Glu+Gln对可溶性蛋白质含量无明显影响.氨基酸和硫酸铵对小白菜硝酸盐含量及营养品质的影响与其对根系活力,叶绿素含量、谷草转氨酶(GOT)、谷丙转氨酶(GPT)活性的提高作用有关.  相似文献   

5.
王兵  温奋翔  肖波 《环境科学》2016,37(9):3447-3452
为了对挺水植物在水环境与水生态修复中的应用提供参考依据,选取黄菖蒲(Iris pseudacorus L.)为对象,通过模拟水培实验,对比研究了6种水体硝态氮质量浓度(10.68、23.88、42.22、63.33、82.92、97.13 mg·L~(-1))下,黄菖蒲地上和地下生物量、根冠比、叶绿素含量、氮累计吸收量以及对硝态氮去除效果的差异,以期明确模拟水体硝态氮质量浓度对黄菖蒲生长及其氮吸收能力的影响.结果显示,首先,不同硝态氮质量浓度对黄菖蒲地上部分(茎叶)生长的影响大于地下部分(根);当硝态氮质量浓度为10.68 mg·L~(-1)时,黄菖蒲的根冠比增加;当硝态氮质量浓度为42.22~97.13 mg·L~(-1)时,黄菖蒲的根冠比减少.其次,黄菖蒲适宜生长的硝态氮质量浓度为23.88~63.33 mg·L~(-1);硝态氮质量浓度低于10.68 mg·L-1或高于82.92mg·L-1时,均会对黄菖蒲的叶绿素合成产生抑制作用.再次,黄菖蒲对氮的累积量随硝态氮质量浓度增加而增加,且地下部分对氮的累积能力优于地上部分;6种浓度下,单株黄菖蒲的氮累计吸收量为10.56~75.43 mg,其地下部分依次为地上部分的7.2、2.3、2.5、2.1、1.6以及1.5倍.此外,黄菖蒲对氮的利用效率与硝态氮质量浓度之间成显著的幂函数关系,且地上部分的氮利用效率高于地下部分.最后,黄菖蒲对硝态氮的去除率随硝态氮质量浓度增加而增加,6种浓度下黄菖蒲对硝态氮的去除率介于94.9%和99.3%之间,且水体中硝态氮质量浓度随时间延续呈指数函数降低.结果表明,黄菖蒲对硝态氮有很好的去除效果,但黄菖蒲的生长及其对氮的吸收与去除效率受水体硝态氮质量浓度影响显著,且地上部分较地下部分更为敏感.  相似文献   

6.
利用化学需氧量(CODCr)分别为318 mg·L-1、157 mg·L-1、30 mg·L-1的生活污水培养轮叶黑藻.在各浓度生活污水中添加浓度为0.1%的壳聚糖,同时设不添加壳聚糖的对照组.通过对轮叶黑藻生长指标和叶绿素、可溶性蛋白质含量及抗氧化酶活性的测定,研究壳聚糖对沉水植物轮叶黑藻抗污能力的影响.结果显示,壳聚糖可明显促进轮叶黑藻主茎、根、分枝的生长,添加壳聚糖的试验组植株的叶绿素、可溶性蛋白质的含量比对照组高,且差异显著.壳聚糖能诱导黑藻超氧化物歧化酶和过氧化物酶活性增高,减轻膜脂质过氧化反应.研究结果提示壳聚糖能够促进黑藻生长,提高黑藻的抗污能力.  相似文献   

7.
采用水培的方法,研究了不同浓度Mn(0.0003、0.5、1、2、4、8 mmol · L-1)对Mn超富集植物短毛蓼(Polygonum pubescens Blume)和水蓼(Polygonum hydropiper L.)叶片铵态氮、硝态氮、游离脯氨酸、可溶性蛋白质含量及氮素代谢关键酶:硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)和谷氨酸脱氢酶(GDH)活性的影响.结果表明,随着Mn处理浓度的增加,短毛蓼和水蓼的根、茎、叶中Mn含量显著增加(p<0.05),在相同Mn处理浓度下短毛蓼中Mn含量均大于同部位水蓼中Mn含量.在Mn处理浓度小于1 mmol · L-1时,Mn对短毛蓼的株高、株重影响不显著,但对水蓼的影响显著(p<0.05),表明短毛蓼比水蓼更耐Mn污染.Mn处理显著降低了短毛蓼硝态氮含量(p<0.05),提高了可溶性蛋白质含量,浓度为8 mmol · L-1的Mn处理显著提高了水蓼硝态氮、铵态氮、可溶性蛋白质含量及短毛蓼、水蓼游离脯氨酸含量(p<0.05).Mn引起了短毛蓼和水蓼氮素代谢关键酶活性的变化,显著降低了水蓼叶片NR、短毛蓼叶片GS活性(p<0.05);在Mn处理浓度为1 mmol · L-1时,短毛蓼叶片NR活性最高,为对照的1.91倍,而2、4、8 mmol · L-1 Mn处理显著降低了短毛蓼和水蓼GOGAT活性(p<0.05).另外,Mn处理显著提高了短毛蓼和水蓼叶片GDH活性(p<0.05),在Mn处理浓度为8 mmol · L-1时,短毛蓼、水蓼叶片GDH活性分别为对照的16.29倍和1.29倍.  相似文献   

8.
何腾霞  倪九派  李振轮  孙权  冶青  徐义 《环境科学》2016,37(3):1082-1088
分别采用高浓度的铵态氮、硝态氮、亚硝态氮、有机氮模拟废水和铵态氮与硝态氮、铵态氮与亚硝态氮混合模拟废水,研究耐冷反硝化细菌Arthrobacter arilaitensis Y-10的异养硝化、好氧反硝化以及同时硝化和反硝化能力,通过测定Y-10菌株在整个脱氮过程中的D600值,分析细菌生长与生物脱氮之间的联系.结果表明,耐冷菌株Arthrobacter arilaitensis Y-10具有很强的硝化和反硝化能力,15℃条件下,4 d内分别可将铵态氮由208.43 mg·L~(-1)降至72.92 mg·L~(-1),去除率65.0%;硝态氮由201.16mg·L~(-1)降至0 mg·L~(-1),去除率为100%;亚硝态氮由194.33 mg·L~(-1)降至75.43 mg·L~(-1),去除率为61.2%.该菌只在含硝态氮的模拟废水中才会产生亚硝态氮积累;此外,在混合模拟废水中,以去除铵态氮为主.总之,Arthrobacter arilaitensis Y-10能在15℃条件下有效进行异养硝化和好氧反硝化作用,在不同无机氮混合模拟废水中对铵态氮的去除率高达80.0%以上.  相似文献   

9.
香根草对镉毒害的生理耐性和积累特性   总被引:6,自引:0,他引:6  
研究了不同Cd水平(0、1、7.5、15、30mg·L-1)对香根草生理生化指标的影响.实验结果表明,香根草对Cd的积累能力与处理浓度密切相关,体内积累的Cd含量随着Cd处理浓度的增加逐渐增加.当Cd处理浓度为30mg·L-1时,根系积累的Cd含量最高达到2232mg·kg-1(以干重计).低浓度Cd(1mg·L-1和7.5mg·L-1)可促进叶绿素含量和根系活力,但随着Cd处理浓度的增加,叶绿素含量和根系活力逐渐下降.不同浓度的Cd胁迫增加了植物体内丙二醛(MDA)含量、过氧化物酶(POD)和过氧化氢酶(CAT)活性.可溶性蛋白质含量随着Cd处理浓度的增加逐渐下降.香根草对Cd的积累能力很高且主要分布在根部,但将Cd运输到地上部的能力较差.香根草虽不是Cd超积累植物,但具有比较强的稳定化能力,在污染土壤的修复方面有一定应用潜力.  相似文献   

10.
在实验室条件下,以土壤铵态氮、硝态氮、可溶性有机氮及可溶性总氮含量变化为指标,研究了镉胁迫下满江红-鱼腥藻共生体对稻田供氮能力的影响.当土壤中镉浓度为0.3 mg·kg-1时,满江红-鱼腥藻共生体对镉的蓄积量较少,土壤中铵态氮、硝态氮、可溶性有机氮及可溶性总氮含量与对照组无显著差异.当土壤中镉浓度≥1.0 mg·kg-1时,随土壤中镉浓度的增加和处理时间的推移,满江红-鱼腥藻共生体体内的镉含量逐渐增加,土壤中硝态氮、可溶性有机氮及可溶性总氮含量逐渐下降,而铵态氮含量先上升后下降.研究结果表明高浓度的镉胁迫导致满江红-鱼腥藻共生体对土壤的供氮能力显著下降.  相似文献   

11.
为了解富营养水体中NH4+-N胁迫对埃格草(Egeria densa)的影响,通过室外模拟试验,研究了埃格草在不同ρ(NH4+-N)(0、0.5、2.0 mg/L)下的RGR(relative growth rate,相对生长率)、R/S(root/shoot ratio,根冠比)、w(SC)(SC为可溶性糖,soluble sugar)、w(淀粉)、w(蔗糖)、w(FAA)(FAA为游离氨基酸,free amino acid)、w(NH4+-N)和w(NO3--N)的变化.结果表明:随着外源ρ(NH4+-N)的增加,埃格草的RGR和R/S呈降低的趋势,并且在ρ(NH4+-N)为2.0 mg/L时显著降低(RGR为P < 0.001,R/S为P < 0.05);埃格草中w(SC)和w(淀粉)在ρ(NH4+-N)为0.5和2.0 mg/L下有不同程度显著降低[w(SC)为P < 0.01和P < 0.001,w(淀粉)为P < 0.001和P < 0.05],w(蔗糖)在ρ(NH4+-N)为2.0 mg/L时显著降低(P < 0.001);w(FAA)和w(NH4+-N)有随外源ρ(NH4+-N)升高而升高的趋势,并且在ρ(NH4+-N)为2.0 mg/L时升高显著[w(FAA)为P < 0.01,w(NH4+-N)为P < 0.05];w(NO3--N)在ρ(NH4+-N)为0.5和2.0 mg/L下有不同程度显著降低(P < 0.01和P < 0.001).相关分析表明,w(SC)、w(淀粉)和w(蔗糖)之间呈显著正相关,三者与w(FAA)和w(NH4+-N)之间均呈显著负相关,而与w(NO3--N)呈显著正相关;w(FAA)和w(NH4+-N)呈显著正相关,而二者与w(NO3--N)均呈显著负相关.研究显示,NH4+-N影响埃格草的生长,导致C-N代谢的不平衡.   相似文献   

12.
腐殖酸对NH+4-N在饱和含水层中迁移的影响   总被引:1,自引:1,他引:0  
孟庆俊  张彦  冯启言  张双圣 《环境科学》2011,32(11):3357-3364
通过等温吸附实验,研究了有和无腐殖酸2种情况下,NH 4+-N在石英砂上的等温吸附过程,并运用Langmuir方程和Freundlich方程进行了拟合,计算了不同条件下NH 4+-N在石英砂上的最大吸附量;通过室内土柱模拟实验,测定了不同时间内土柱出水中的NH 4+-N、NO 3--N和NO 2--N的含量,分析了腐殖酸在饱和含水层中对水中NH 4+-N迁移转化的影响,并运用伪二级动力学方程和二阶段吸附速率方程对动力学过程进行了拟合.结果表明,Langmuir方程和Freundlich方程均能很好地描述NH 4+-N的等温吸附过程;腐殖酸的存在增加了石英砂对NH 4+-N的吸附量,无腐殖酸时NH 4+-N最大吸附量为0.205mg.g-1,有腐殖酸时NH 4+-N最大吸附量为0.354 mg.g-1.室内土柱实验结果表明,在实验前期,腐殖酸通过增加吸附空间而增大了NH 4+-N吸附量;当吸附饱和后,腐殖酸可能为硝化细菌等微生物提供碳源和能量,参与NH 4+-N转化为NO 3--N和NO 2--N的化学反应,使有腐殖酸条件下的NH 4+-N出水浓度始终低于无腐殖酸条件.伪二级动力学方程和二阶段吸附速率方程均能很好地描述NH 4+-N的吸附过程(无腐殖酸条件下R2=0.992 3,R2=0.994 4;有腐殖酸条件下R2=0.997 7,R2=0.998 1),推测石英砂对NH 4+-N的吸附属于化学吸附过程;通过比较二阶段吸附速率常数k3(有、无腐殖酸时分别为0.247和0.143)和k4(有、无腐殖酸时分别为0.006 27和0.001 7),发现NH 4+-N的吸附主要表现为第一阶段吸附,不定向地吸附在石英砂表面的活性点位上,且腐殖酸的存在使NH 4+-N的平衡吸附量qe增大.  相似文献   

13.
黄河三角洲不同植物群落土壤酶活性特征及影响因子分析   总被引:15,自引:9,他引:6  
莫雪  陈斐杰  游冲  刘福德 《环境科学》2020,41(2):895-904
土壤酶是滨海湿地群落构建和演替的关键因子,但水盐胁迫条件下土壤酶活性的驱动机制尚不明确.以黄河三角洲盐地碱蓬、芦苇、柽柳这3种盐生植物群落为对象,研究其根际与非根际土壤中蔗糖酶、磷酸酶、过氧化氢酶和脲酶的活性特征及其分布规律,并结合土壤理化性质的变化探讨滨海湿地群落演替过程中土壤酶活性的驱动因子.结果表明,盐地碱蓬、芦苇、柽柳群落的根际土壤酶活性和土壤肥力指标均显著高于非根际土壤(P 0. 05).在根际土壤中,磷酸酶与过氧化氢酶活性均表现为盐地碱蓬芦苇柽柳,蔗糖酶与脲酶活性则分别表现为柽柳盐地碱蓬芦苇、盐地碱蓬柽柳芦苇,且不同盐生植物群落根际土壤理化性质存在显著差异(P 0. 05),说明植物类型及其根际效应均会影响土壤酶活性和土壤肥力特征,且根际效应对土壤酶活性的影响大于植被类型.土壤蔗糖酶活性与有效钾(AK)、有效磷(AP)、铵态氮(NH_4~+-N)显著正相关(P 0. 05);脲酶活性与全氮(TN)、有机质(SOM)、AK、AP、NH_4~+-N和硝态氮(NO_3~--N)显著正相关(P 0. 01);二者均与土壤电导率(EC)显著负相关(P 0. 01).磷酸酶和过氧化氢酶活性与土壤含水率(MC)、全碳(TC)、TN、全磷(TP)、SOM、AK和NH_4~+-N均呈显著正相关关系(P 0. 05),同时,pH、总钾(TK)、NO_3~--N还与过氧化氢酶活性显著正相关(P 0. 05).冗余分析(RDA)结果显示,黄河三角洲土壤酶活性特征的主要影响因子从大到小依次为:TC(P 0. 01)、SOM(P 0. 01)、MC(P 0. 01)、TN(P 0. 05)、NH_4~+-N(P 0. 05)和EC(P 0. 05),表明土壤肥力、水分与盐度是黄河三角洲盐生植物群落土壤酶活性的主要影响因子.  相似文献   

14.
典型滨海湿地干湿交替过程氮素动态的模拟研究   总被引:7,自引:4,他引:3  
韩建刚  曹雪 《环境科学》2013,34(6):2383-2389
滨海湿地是海陆相互作用的交错过渡地带,具有敏感而复杂的环境过程与功能价值.以典型滨海湿地崇明东滩为原型,采集湿地沉积物及海水样品,通过土柱模拟方法,研究了半月潮(15 d左右为周期的"大潮")与日潮(一个太阴日内出现的涨潮和落潮)水分生态过程沉积物NO3--N、NO2--N、NH4+-N与溶解性有机氮(DON)含量以及硝酸还原酶(Nar),亚硝酸还原酶(Nir),羟胺还原酶(Hyr)活性等的变化,旨为揭示滨海湿地潮汐驱动下沉积物周期性干湿交替过程氮素动态变化规律及还原机制.半月潮过程中,沉积物变干期间(含水量从35%降至5%~7%),硝化作用占主导地位.随着干燥程度的加剧(含水量从5%~7%降至0%~3%),沉积物中数量可观的NO3--N和NO2--N转化为DON.然而,随着干湿交替频次的增加,NO3--N和NO2--N向DON的转化率显著降低.干燥沉积物淹水变湿后(含水量从0%~3%升至37%~45%),NO3--N、NO2--N、NH4+-N与DON含量平均增加1~3倍.淹水后Nar、Nir活性的迅速升高表明,NO3--N和NO2--N的还原明显改善.3个培养周期沉积物Nar与Nir活性、Hyr活性与NH4+-N含量之间呈现极显著的正相关性,NO3--N、NO2--N含量的减少与NH4+-N含量的增加也显著相关.结合湿地沉积物干湿交替过程"低氮高碳"特征,可以认为,氨化途径主导了半月潮过程NO3--N的还原.相比较而言,日潮过程中,NO3--N、NO2--N、NH4+-N以及DON的含量均较为稳定,分别为(3.0±0.3)、(1.2±0.1)、(133.3±4.3)和(41.1±10.6)mg·kg-1.因此,日潮过程对沉积物氮素动态变化的影响较小.  相似文献   

15.
去除地下水中硝酸盐的渗透性反应墙研究   总被引:2,自引:1,他引:1  
通过土柱试验模拟地下水环境,研究以发酵树皮和沙子混合物为反应介质的渗透性反应墙(生物墙)对地下水中硝酸盐的去除情况,探讨其作用机制与影响因素,为硝酸盐污染地下水的修复提供经济有效的方法.结果表明,从模拟生物墙运行的第3 d起,墙内为强还原环境(Eh在-100 mV之下),有利于硝酸盐的还原降解.在15 d的运行时间内,模拟生物墙对水中硝态氮(NO3--N)的去除率为80%~90%左右(NO3--N由进水的20 mg·L-1可降至出水的1.6 mg·L-1);出水中亚硝态氮(NO2--N)的浓度较低,一直小于2.5 mg·L-1;出水中铵态氮(NH4+-N)的浓度在前2 d较低,从第3 d起升至12 mg·L-1.模拟生物墙对NO3--N的去除机制主要为吸附和微生物降解.提高模拟生物墙内水流速度后,NO3--N的去除率有所下降,出水中NH4+-N的浓度明显降低.在模拟生物墙下游串联一个模拟沸石墙,可去除水中98%的NH4+-N.  相似文献   

16.
为有效控制白酒废水中高质量浓度NH4+-N对A/O系统冲击引起的出水水质超标问题,分析比较单级A/O工艺和分段进水两级A/O工艺[进水时间(以min计)分配比为7:3]对白酒废水的处理效果.结果表明:与单级A/O工艺相比,分段进水两级A/O工艺出水中ρ(NH4+-N)、ρ(NO2--N)、ρ(NO3--N)和ρ(CODCr)均显著降低,其平均去除率分别提高了16.9%、43.2%、49.7%和8%.分段进水两级A/O工艺的二次进水能够为短程硝化反硝化的进行提供有效碳源和NH4+-N等,为NO2--N和NO3--N等去除提供了有利条件;同时,它通过促进对系统内碳源的利用以及NO2--N的去除,进一步降低了出水中ρ(CODCr).此外,分段进水两级A/O工艺通过降低NH4+-N和NO2--N等污染物质量浓度,也能有效减弱其对氨氧化菌和亚硝酸盐氧化菌等微生物的抑制作用,为后续好氧阶段含氮污染物的去除奠定基础.但是,分段进水两级A/O工艺对白酒废水中PO43-的去除效果有限,这主要是因为第二阶段的NO2--N存在使反应系统处于缺氧环境,同时在碳源不充足的情况下,导致聚磷微生物释磷不充分,降低了第二好氧段的吸磷动力.研究显示,分段进水两级A/O工艺能够有效强化白酒废水中三态氮和CODCr的降解去除.   相似文献   

17.
在水-土环境中,单一物质引起的污染很少,绝大多数污染是多种污染物质共存所造成的.利用碘量法测定溶解氧,研究了氨氮与镉单一和复合作用对沉水植物穗花狐尾藻和轮叶黑藻光合能力的影响.结果显示,氨氮浓度在4.0 mg·L-1时,对轮叶黑藻有较强的胁迫作用,表现为光合作用的产氧量与呼吸作用的耗氧量均下降,而此浓度对穗花狐尾藻没有表现出胁迫作用;当镉处理浓度为0.2 mg·L-1时,镉对2种沉水植物都表现出明显的胁迫效应,且对轮叶黑藻的胁迫作用更强;当镉与氨氮复合作用时,对轮叶黑藻产生联合毒害作用,但对穗花狐尾藻毒害作用较轻,可能原因是穗花狐尾藻所含的粗纤维比轮叶黑藻少,细胞壁上能结合重金属的位点较少,所以吸附的镉相应减少,毒性较小.实验结果表明在进行湖泊水生植物修复时,相对于轮叶黑藻,穗花狐尾藻更适合作为生态恢复的先锋物种.  相似文献   

18.
氨氮在饮用水生物滤池内的去除机制   总被引:2,自引:1,他引:1  
为探讨饮用水生物滤池对NH4+-N的去除机制,测定生物滤池进出水中NH4+-N、NO2--N、NO3--N、高锰酸盐指数、总磷、单质氮(N2)、温度和溶解氧(dissolved oxygen,DO)等指标,并采集生物滤池不同层高(0、10、20、40、60 cm)活性炭生物填料,应用分子生物学技术,对样品中的细菌种群进行研究.结果表明,根据进水NH4+-N浓度分为3个阶段,第一、二和三阶段都发生了"氮亏损"现象(出水无机氮之和小于进水无机氮之和),氮亏损的量(出水无机氮之和与进水无机氮之和的差值)分别为0.94、0.32和0.15 mg.L-1.氮亏损的量与进水中NH4+-N浓度有很好的正相关性,但与进水中高锰酸盐指数浓度没有线性关系.第一阶段水中N2的平均浓度随着生物滤池填料层高呈上升趋势,进水中N2平均浓度是14.04 mg.L-1,出水N2平均浓度为14.67 mg.L-1.测序结果显示活性炭上生物膜中氨氧化细菌(ammonia-oxidizing bacteria,AOB)全部归为3个常见属:Nitrosococcus、Nitrosomonas和Nitrosospira.当生物滤池进水NH4+-N浓度较高时,生物滤池中发生的"氮亏损"现象是由AOB的作用.  相似文献   

19.
北运河下游典型河网区水体中氮磷分布与富营养化评价   总被引:27,自引:13,他引:14  
选择北运河下游典型河网区(闸坝多、水流慢和湖库化)为研究对象,通过为期1 a的水质监控,阐述了河网区氮、磷的时空变化特征,并利用对数型幂函数普适指数公式对其水体营养状态进行了评价.结果表明,河网区水体中TN平均质量浓度为12.50 mg.L-1(NH4+-N占67.41%),TP为1.45 mg.L-1(SRP占80.81%).河网区水体中氮、磷的时空分布特征明显,TN和NO 3--N质量浓度随季节变化特征趋于一致,NH 4+-N稍有不同;TP和SRP质量浓度随季节变化特征基本一致.从河网区进水带至出水带,水体中氮、磷质量浓度均呈逐渐下降趋势,其中TN、NH4+-N和NO3--N平均质量浓度分别从19.30、13.22和2.19mg.L-1降至7.98、4.45和1.50 mg.L-1;TP和SRP分别从1.95和1.59 mg.L-1降至1.11和0.91 mg.L-1.富营养化评价综合指数表明,河网区水体在时空尺度上均处于"极富"营养状态.  相似文献   

20.
海洋菌株y3的分离鉴定及其异养硝化-好氧反硝化特性   总被引:9,自引:4,他引:5  
从胶州湾海底沉积物中筛选出1株高效的海洋异养硝化-好氧反硝化细菌y3,经形态学观察、生理生化实验和16S rRNA基因序列分析,确定该菌株为假单胞菌属(Pseudomonas sp.).对其在实际含氮海水中的脱氮实验结果表明,菌株y3的最佳碳源为柠檬酸三钠,最适p H为7.0,最适C/N为13;菌株均能以NH4Cl、Na NO_2和KNO_3为唯一氮源进行反应,20 h后其去除率分别为98.69%、78.38%和72.95%,在硝化过程中几乎没有亚硝酸盐和硝酸盐的积累.以不同比例混合两种氮源反应20 h,当NO~-_3-N∶NO~-_2-N分别为2∶1、1∶1和1∶2时,脱氮率分别为99.56%、99.75%和99.41%;当NH~+_4-N∶NO~-_3-N分别为2∶1、1∶1、1∶2时,脱氮率均为100%;当NH~+_4-N∶NO~-_2-N分别为2∶1、1∶1、1∶2时,脱氮率分别为90.43%、92.79%和99.96%,多高于单一氮源的情况.该菌株具有较好的高盐废水脱氮处理效能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号