首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Environmental photodegradation of mefenamic acid   总被引:1,自引:0,他引:1  
Werner JJ  McNeill K  Arnold WA 《Chemosphere》2005,58(10):1339-1346
Pharmaceuticals and personal care products are an emerging class of environmental pollutants. Photolysis is expected to be a major loss process for many of these compounds in surface waters, including the common non-steroidal anti-inflammatory drug mefenamic acid. The direct photolysis solar quantum yield of mefenamic acid was observed to be 1.5+/-0.3x10(-4). Significant photosensitization was observed in solutions of Suwanee River fulvic acid and Mississippi River water, as well as for the model photosensitization compounds 3'-methoxyacetophenone, 2-acetonaphthone and perinaphthenone. Quenching, sparging and light-filtering experiments suggested a direct reaction of mefenamic acid with excited triplet-state dissolved organic matter as the major photosensitization process. The persistence of the model photosensitizer suggests that the photosensitization by perinaphthenone occurs either by triplet-energy transfer or an electron transfer followed by rapid regeneration of the sensitizer. Due to its low quantum yield, the loss of mefenamic acid in sunlit natural waters is expected to depend on both direct and indirect photodegradation processes.  相似文献   

2.
The chemical speciation of trace metals in natural waters has important implications for their biogeochemical behavior. Trace metals are present in natural waters as dissolved species and associated with colloids and particles. The complexation of one trace metal (Cd and Zn at 200 and 390 microg/l respectively) with a green alga Pseudokirchneriella subcapitata in colloid-free algal culture medium and in presence of colloidal humic substances (HS) is presented. The influence of the nature of colloids was also addressed using three "standard" HS: fulvic acid (FA) and, soil (SHA) and peat humic acids (PHA). The chemical speciation model, MINTEQA2, was used to simulate the influence of pH and standardized culture medium on metal association with humic substances. The model was successfully modified to consider the differences in the metal complexation with fulvic (FA) and humic acids (HA). The deviations of concentrations of metals associated with HS between experimental results and model predictions were within a factor of approximately 2. The results of speciation model highlight the influence of the experimental conditions (pH, EDTA) used for alga bioassay on the behavior of Cd and Zn. The computed speciation suggests working with a pH buffered/EDTA-free mixture to avoid undesirable competition effects. The behavior of Cd and Zn in solution is more strongly influenced by HS than by alga. Metal-HS associations depend on metal and humic substance nature and concentration. Cd is complexed to a higher extent than Zn, in particular at larger HS concentration, and the complexation strength is in the order FA相似文献   

3.
The influence of dissolved humic substances on the transport of (4-chloro-2-methylphenoxy) acetic acid (MCPA) in a sandy soil with a low organic carbon content was studied in a column experiment. Soil columns were eluted with aqueous solutions containing different fractions of humic substances. More than 70% of the applied compound was found in the leachate in all sandy soil experiments, but distinct differences were obtained depending on the composition of the eluent. The addition of both humic and fulvic acids to the eluent affected the leaching behaviour of MCPA. While the presence of humic acids increased and accelerated the movement of MCPA in the investigated sandy soil, fulvic acids caused the opposite effect: increased retention was observed relative to the control. We concluded that a possible carrier transport or retention strongly depends on the composition of the dissolved organic matter. Thus, changes in the composition of dissolved organic matter may affect MCPA movement into deeper soil layers.  相似文献   

4.
Lee D 《Chemosphere》2007,66(9):1727-1733
In this study, we have investigated the structure of Pb-doped solidified waste forms (SWF) for assessment of lead fixation. A large quantity of lead precipitates produced during the S/S, based upon the results of cement-water solution analysis, X-ray diffraction and electron probe microanalysis/electron dispersive spectroscopy investigations, have been shown to be principally leadhillite (lead carbonate sulfate hydroxide, Pb(4)SO(4)(CO(3))(2)(OH)(2)), lead carbonate hydroxide hydrate (3PbCO(3).2Pb(OH)(2).H(2)O) and two other unidentified lead salts. In the long curing, the lead species dissolved from the lead precipitates are fixed into the cement matrix, forming a gelling calcium lead silicate hydrate during cement-based solidification. On leaching the lead precipitates such as leadhillite were markedly dissolved/released and some dissolved lead species were adsorbed to silicate-rich surface of leached SWF with the subsequent formation of mainly amorphous gel of calcium lead silicate hydrate.  相似文献   

5.
城市污水二级出水中溶解性有机物特性分析   总被引:2,自引:0,他引:2  
分别采用凝胶色谱、亲疏水性组分分离、荧光色谱等方法,研究了城市污水处理厂二级出水中溶解性有机物的分子量分布、亲疏水组分含量以及荧光光谱特性。结果表明,二级出水中疏水性组分较亲水性组分多,疏水性组分约占总有机物的64.3%,而亲水性组分占35.7%左右;二级出水及其不同亲/疏水组分中溶解性有机物分子量分布基本集中在4.5 kDa以下,其中弱疏水性组分和亲水性组分中主要为分子量小于1.5 kDa的有机物;二级出水溶解性有机物中含有腐殖酸类、富里酸类以及蛋白质类物质,其中含量以腐殖酸类为主。  相似文献   

6.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

7.
Iodomethane is produced in the marine environment by algae and plankton. Model experiments have shown that iodomethane can dissolve a series of metal sulphides, in agreement with some of the results mentioned in the relative literature. While no dissolution of SnS was observed, PbS and HgS were dissolved proportionally with the iodomethane concentration. The two forms of HgS (cinnabar and metacinnabar) behaved differently, with metacinnabar being more soluble than cinnabar. Moreover, iodomethane can methylate lead and tin and mercury can be methylated when methyllead and methyltin compounds are present in the model system. The methylated species were identified using gas chromatography, and there is evidence that lead and tin undergo the same methylation mechanism. Preliminary experiments with natural sediments were performed, but no dissolution of Pb, Sn or Hg was observed. CAPSULE: Iodomethane can solubilize Pb and Hg sulphides, and methylate Pb and Sn, and (indirectly) Hg.  相似文献   

8.
Natural organic polyelectrolytes (humic and fulvic acids) and their metal complexes were removed by adsorption onto xonotlite. The removal percentages of humic and fulvic acids by xonotlite were approximately 80% and 30%, respectively. Humic acid removal from solution by adsorption onto xonotlite took place more readily than fulvic acid removal. The molecular weight distributions of the humic substances remaining in solution after adsorption with the xonotlite were measured with size exclusion chromatography. A comparison of molecular weight distributions demonstrated conclusively that large molecular weight components were adsorbed preferentially, indicating that adsorption efficiency depends on the number of functional groups of humic substances. Furthermore, the surface topography of the adsorbent was observed before and after adsorption by scanning electron microscopy. The calculated heat of adsorption was of 330 kJ mol(-1) which was evaluated from the Clapeyron-Clausius equation. Therefore, the adsorption type can be considered chemical. Since xonotlite can be easily synthesized and obtained at low cost, the adsorption method of humic and fulvic acids is superior to their precipitation.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are persistent, bioaccumulative, and toxic chemicals and are listed as priority pollutants by the US EPA. Although they are sparsely soluble in water, their solubility can be increased by binding to dissolved organic matter in natural waters, which will further increase their environmental risk as toxic pollutants. In this study, the interaction between PAHs, exemplified by fluorene and anthracene, and fulvic acid (FA) was studied using fluorescence quenching titration method with fluorescence emission spectra, respectively. The association of FA with the mixture of fluorene and anthracene was also evaluated by excitation–emission matrix (EEM) fluorescence spectrometry combined with parallel factor (PARAFAC) analysis. Results demonstrate that EEM fluorescence spectrometry with PARAFAC analysis was sensitive and reliable to determine the binding properties of PAHs with FA in a mixed aqueous solution. The conditional stability constants and binding capacities show that both PAHs bind to FA tightly.  相似文献   

10.
The desorption characteristics of lead in two variable charge soils (one developed from Arenaceous rock (RAR) and the other derived from Quaternary red earths (REQ)) were studied, and the effects of pH value, organic acid, and competitive ions were examined. Desorption of Pb(2+) decreased from nearly 100.0 to 20.0% within pH 1.0-4.0 in both soils, and then the decrease diminished at pH > 4.0. Organic ligands at relatively low concentrations (< or =10(-3) mol L(-1)) slightly inhibited Pb(2+) desorption, but enhanced Pb(2+) desorption at higher concentrations. In this study, citric acid or acetic acid at higher concentrations (>10(-3) mol L(-1)) had the greatest improvement of Pb(2+) desorption, followed by malic acid; and the smallest was oxalic acid. Desorption of the adsorbed Pb(2+) increased greatly with increasing concentrations of added Cu(2+) or Zn(2+). Applied Cu(2+) increased Pb(2+) desorption more than Zn(2+) at the same loading.  相似文献   

11.
There is growing concern about the accumulation of metals in tropical agricultural soils. In this study, experimental results from batch studies were used to test whether multi-surface geochemical models could describe metal binding in selected Vietnamese soils. The multi-surface models considered metal binding to iron hydroxides (using the diffuse layer model), organic matter (Stockholm Humic model and NICA-Donnan model), and phyllosilicate clay (Gaines-Thomas equation) as well as complexation to dissolved organic and inorganic ligands in the solution phase. We found that for total dissolved Cd, Cu and Zn the two multi-surface models being tested provided very good model fits for all soils, as evidenced by low root-mean square errors between model predictions and observations. These results suggest that organic matter is an important sorbent for many metals in these soils. However, poor fits were obtained for Cr(III), Mn and Pb for all soils. The study also suggests that the pH is the main factor that controls the solubility of metals in tropical Fluvisols and Acrisols subjected to application of biosolids and wastewater, and that advanced multi-surface models can be used to simulate the binding and release of many trace metals.  相似文献   

12.
Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.  相似文献   

13.
14.
Equilibrium measurements were carried out with the herbicide isoproturon on natural adsorbents (brown forest-, chernozem-, sandy soils and quartz) in different buffered media (pH 5, 7, 8 phosphate buffer). Adsorption isotherms were fitted by a multi-step adsorption equation providing numerical information used in the environmental propagation models and risk assessment works. In the adsorption of the slightly polar isoproturon the dissolved organic matter of the soil and the pH play an important role. At molecular level, results are interpreted by taking into consideration the hydrophobic interaction and the formation of hydrogen bonds between the surface and the solute. The observed adsorption behavior indicates that the organic matter content of the soils and its soluble fulvic acid, alkaline soluble humic acid and insoluble humin fractions were considerable different. The chernozem soil containing the highest amount of insoluble organic fraction proved to be a very efficient adsorbent. The brown forest and the sandy soils exhibit rather similar adsorbent properties but at pH 7 the latter containing more fulvic acid adsorbs less isoproturon due to the enhanced solubility of the soil organic matter. In alkaline conditions the negatively charged solute and the surface repel each other and the hydrophobic interactions are also weaker than in neutral media.  相似文献   

15.
研究了土壤天然溶解性有机质(富里酸或腐殖酸)对黑炭吸附萘和菲的影响.结果表明:增加天然溶解性有机质的负载量能够减弱黑炭对萘和菲的吸附能力;而同在100mg的负载量条件下,不同分子量的富里酸或腐殖酸的负载对黑炭吸附萘和菲的抑制作用没有明显差别;相对于富里酸或腐殖酸单独负载,金属离子(Al3+或Fe3+)和富里酸或腐殖酸联...  相似文献   

16.
Real-time or near real-time in-situ monitoring of dissolved organic matter (DOM) composition in natural waters and engineered treatment systems provides critical information to water quality scientists and engineers, particularly when the monitoring techniques can provide some information about the chemical nature of DOM. The efficacy of various indices derived from rapid, low-cost spectroscopic and chromatographic techniques to discriminate DOM composition was tested for samples prepared from well-defined mixtures of purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). Sensitivities of the discrimination indices were examined by comparing (1) the differences between measured values and those predicted based from mass balance and the end member characteristics, and (2) the linear correlations between index values and mass ratios of the DOM mixtures. Size exclusion chromatography (SEC) results revealed that the weight-average molecular weight (MW(w)) may be a useful approach for tracking DOM mixing processes, although the number-average molecular weight (MW(n)) may be better for distinguishing different DOM compositions. Specific ultraviolet absorbance measured at 254 nm (SUVA(254)) performed better as a discrimination index than did two previously recommended absorbance ratios, both in terms of making better predictions of intermediate compositions and in exhibiting a more linear correlation with PAHA mass ratio. Several well-defined peaks in the derivative absorption spectra (301 and 314 nm for the first derivative, 217 nm for the third derivative, and 211 and 224 nm for the fourth derivative) also were found to be promising potential DOM discrimination indices. Finally, a fluorescence ratio based on humic- versus fulvic-like fluorescence proved to be a superior DOM discrimination index for the two DOM end members studied here. In general, this study illustrates the evaluation process that should be followed to develop rapid, low-cost discrimination indices to monitor DOM compositions based on end member mixing analyses.  相似文献   

17.
Abstract

Fate of the fungicide chlorothalonil (TCIN) binding to dissolved organic acid fractions was quantified using gas‐purge desorption studies. Binding studies were conducted to measure the dissolved organic carbon partition constant (KDOC) with aquatic fulvic and humic acid fractions purified from cranberry bog water. Desorption studies at DOC concentrations up to 50 mg L‐1 resulted in mean log KDOC values of 4.63 (s.d.=0.5, n=8) and 4.81 (s.d.=0.7, n=7) for fulvic and humic acids, respectively. These values deviated from reported KOC (organic carbon) values by 0.5 to 1.5 orders of magnitude. The relationship between KOC and KDOC did not conform to accepted ratios of 10: 1 to 3: 1, although these studies were conducted with the strong hydrophobic fraction of DOC. Binding was rapid suggesting hydrophobic partitioning or weak Van Der Waals forces as binding mechanisms. The strong binding potential for TCIN to aquatic humic substances corresponds to increased solubility in the aqueous system. Sorption to DOC suggests a possible transport mechanism which may result in elevated concentrations of TCIN in cranberry bog systems.  相似文献   

18.
The quantitative determination of pesticide binding to dissolved humic substances is relevant to both water treatment operation using activated carbon adsorption process and the application of transport models that predict the environmental distribution patterns of a given hydrophobic contaminant. In this study and in a first set of experiments, the extent of binding between (i) three pesticides of environmental concern, aldicarb, lindane and pentachlorophenol, and (ii) dissolved commercial humic acid and soil extracted fulvic acid, was determined using dialysis experiments and water solubility enhancement tests. In a second set of experiments, the influence of dissolved humic substances or pesticide on the retention of the other co-adsorbate onto activated carbon was investigated in binary systems. It was found that association was negligible for aldicarb and that the pesticide sorption onto activated carbon was not affected by humic acid (8.5 mg liter(-1) DOC). The association constants K for lindane and pentachlorophenol were identical in the presence of fulvic acid (logK=4.1) but lower than that observed with humic acid. In the presence of humic acid, binding affinity for pentachlorophenol (logK=4.6) was higher than the one observed for lindane (logK=4.4), despite its much higher water solubility. This observation suggests that the aromatic character of the pentachlorophenol molecule contributes to association interactions with humic acid. From co-adsorption experiments onto activated carbon it was found that fulvic acid (7.7 mg litre(-1) DOC) slightly enhances sorption kinetics of pentachlorophenol. Lindane (1 mg litre(-1)) does not affect sorption kinetics for fulvic acid but markedly enhances both the sorption kinetics and adsorptive capacity for humic acid. Activated carbon retention of dissolved humic substances or pesticide appears to be enhanced by the association potential that exists between these co-adsorbates in some binary systems.  相似文献   

19.
Excess boron is a growing environmental problem. It often affects agricultural yields, where reuse of wastewater for irrigation is practiced. This problem raises the need for reliable, simple and economical methods to monitor boron concentrations in wastewater and soil extracts. One such method, the commonly used azomethine-H spectrophotometric method, suffers from color interference, originating from high concentrations of dissolved organic matter, when applied to many wastewater and agricultural soil extracts. Moreover, this method only quantifies free dissolved boron and lacks the ability to quantify boron that is adsorbed to either the dissolved organic matter or suspended solids that are present in the sample. This work suggests a modification of the standard azomethine-H method, in which the solution is digested with potassium persulfate prior to the standard procedure. We show that this pretreatment can overcome the color interference and lead to highly accurate and precise boron analyses in wastewater. In soil extracts, the boron concentrations obtained using the suggested procedure were better correlated to inductively coupled plasma (ICP) spectrometry results than those measured by the standard method, because whereas the standard method quantifies the free dissolved boron only, the modified method, like the ICP method, quantifies the total dissolved boron in the sample. Thus, the suggested modification can be used to quantify the respective distributions of free dissolved boron, boron adsorbed to dissolved organic matter and boron adsorbed to suspended solids in soil extracts and water samples.  相似文献   

20.
A combination of reverse osmosis (RO) concentration and DAX-8/XAD-4 resin adsorption techniques is used to isolate the various constituents of urban dissolved organic matter (DOM) from inorganic salts. Three fractions: hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) accounting respectively for 35%, 20% and 45% of extracted carbon, are isolated from effluents of a major French wastewater treatment plant. This atypical DOC distribution, in comparison with natural water where the HPO fraction dominates, shows the significance of HPI fraction which often gets neglected because of extraction difficulties. A number of analytical techniques (elemental, spectroscopic: UV, FTIR) allow highlighting the weak aromaticity of wastewater effluent DOM (EfOM) due to fewer degradation and condensation processes and the strong presence of proteinaceous structures indicative of intense microbial activity. Copper toxicity in the presence of DOM is estimated using an acute toxicity test on Daphnia Magna (Strauss). Results reveal the similar protective role of each EfOM fraction compared to reference Suwannee river fulvic acid despite lower EfOM aromaticity (i.e. specific UV absorbance). The environmental implications of these results are discussed with respect to the development of site-specific water quality criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号