首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
The stronger coordination ability of mercury ions with organic ligands than the metal ions in metal organic framework (MOFs) provides an accessible way to separate mercury ions from solution using specific MOFs. In this study, a Co-based MOF (ZIF-67, Co(mIM)2) was synthesized. It did not introduce specific functional groups, such as -SH and -NH2, into its structure through complicated steps. It separate Hg2+ from wastewater with a new strategy, which utilized the stronger coordination ability of Hg2+ with the nitrogen atom on the imidazole ring of the organic ligand than the Co2+ ions. Hg2+ replaced Co2+ nodes from ZIF-67 and formed a more stable precipitate with mIM. The experimental results showed that this new strategy was efficient. ZIF-67 exhibited Hg2+ adsorption capacity of 1740 mg/g, much higher than the known MOFs sorbents. mIMs is the reaction center and ZIF-67 can improve its utilization. The sample color faded from purple to white due to the loss of cobalt ion. It is a great feature of ZIF-67 that allows users to judge whether the sorbent is deactivated intuitively. ZIF-67 can be sustainable recycled by adding organic ligands to the solution after treatment due to its simple synthesis method at room temperature. It's a high-efficient and sustainable sorbent for Hg2+ separation from wastewater.  相似文献   

2.
Ligands present in dissolved organic matter (DOM) form complexes with inorganic divalent mercury (Hg^2+) affecting its bioavailability in pelagic food webs. This investigation addresses the influence of a natural gradient of DOM present in Patagonian lakes on the bioaccumulation of Hg^2+ (the prevailing mercury species in the water column of these lakes) by the algae Cryptomonas erosa and the zooplankters Brachionus calyciflorus and Boeckella antiqua. Hg^2+ accumulation was studied through laboratory experiments using natural water of four oligotrophic Patagonian lakes amended with^197Hg^2+. The bioavailability of Hg^2+ was affected by the concentration and character of DOM. The entrance of Hg^2+ into pelagic food webs occurs mostly through passive and active accumulation. The incorporation of Hg^2+ by Cryptomonas, up to 27% of the Hg^2+ amended, was found to be rapid and dominated by passive adsorption, and was greatest when low molecular weight compounds with protein-like or small phenolic signatures prevailed in the DOM. Conversely, high molecular weight compounds with a humic or fulvic signature kept Hg^2+ in the dissolved phase, resulting in the lowest Hg^2+ accumulation in this algae. In Brachionus and Boeckella the direct incorporation of Hg from the aqueous phase was up to 3% of the Hg^2+ amended. The dietary incorporation of Hg^2+ by Boeckella exceeded the direct absorption of this metal in natural water, and was remarkably similar to the Hg^2+ adsorbed in their prey. Overall, DOM concentration and character affected the adsorption of Hg^2+ by algae through competitive binding, while the incorporation of Hg^2+ into the zooplankton was dominated by trophic or dietary transfer.  相似文献   

3.
降水中汞的赋存形态   总被引:5,自引:2,他引:3  
在北京市不同地点和不同时期采集降水样品 36个 .分析结果表明 ,汞易形成相对稳定的络合态汞 ,除 Hg0(w) 外各形态汞含量均表现为采暖期大于非采暖期 .降水中各形态汞的含量和百分比按大小排序 ,经统计检验 ,在非采暖期水相中为 Hgre(w)>[Hg0(w),Hg2+(w)],颗粒态汞为 Hgre(p)>Hg2+(p)>Hg0(p);在采暖期水相中均为 Hgre(w)>Hg2+(w)>Hg0(w),颗粒态汞为 Hgre(p)>[Hg2+(p),Hg0(p)].在非采暖期颗粒态汞含量及百分比 HgT(p)>溶解态汞 HgT(w),在采暖期颗粒态汞和溶解态汞没有明显差异 .小于 0.45μm颗粒吸附的汞 Hg0相对较多 ,Hg2+形态汞较少 ,水溶液中 Hg0 形态汞少 ,Hg2+形态汞多 ,表明 Hg0 形态汞更易在微小颗粒物上吸附 ,而 Hg2+形态汞相当部分可以保留在水溶液中 .  相似文献   

4.
The use of filamentous fungi in bioremediation of heavy metal contamination has been developed recently. This research aims to observe the capability of filamentous fungi isolated from forest soil for bioremediation of mercury contamination in a substrate. Six fungal strains were selected based on their capability to grow in 25 mg/L Hg2+-contaminated potato dextrose agar plates. Fungal strain KRP1 showed the highest ratio of growth diameter, 0.831, thus was chosen for further observation.Identification based on colony and cell morphology carried out by 18S rRNA analysis gave a 98%match to Aspergillus flavus strain KRP1. The fungal characteristics in mercury(Ⅱ) contamination such as range of optimum pH, optimum temperature and tolerance level were 5.5–7 and 25–35℃ and 100 mg/L respectively. The concentration of mercury in the media affected fungal growth during lag phases. The capability of the fungal strain to remove the mercury(Ⅱ) contaminant was evaluated in 100 mL sterile 10 mg/L Hg2+-contaminated potato dextrose broth media in 250 mL Erlenmeyer flasks inoculated with 108spore/mL fungal spore suspension and incubation at 30℃ for 7 days. The mercury(Ⅱ) utilization was observed for flasks shaken in a 130 r/min orbital shaker(shaken) and nonshaken flasks(static) treatments. Flasks containing contaminated media with no fungal spores were also provided as control. All treatments were done in triplicate. The strain was able to remove 97.50%and 98.73% mercury from shaken and static systems respectively. A. flavus strain KRP1 seems to have potential use in bioremediation of aqueous substrates containing mercury(Ⅱ) through a biosorption mechanism.  相似文献   

5.
Reactions of Hg(I) and Hg(II) with oxidizing and reducing agents have been investigated using stopped-flow and spectroscopic techniques. Hg22+ was found to be oxidized by HClO and radicals produced by Fentons reagent (Fe2+ + H2O2). The rate determining step in the reaction of Hg22+ and HClO is probably a relatively rapid reaction of Hg0 and HClO. A photochemically induced reduction of Hg(OH)2(aq) to Hg0 was observed when irradiating with simulated sunlight (λ>290 nm), which may be a process of environmental importance. Aqueous Hg(CN)2 and HgCl2 were found to be stable. The rate of reduction of Hg(SO3)22− is not affected by irradiation. No oxidation of Hg22+ was found when mixing solutions containing H2O2 or Fe3+ or a mixture of the two which suggests that H2O2 is not an important oxidant for mercury under environmental conditions.  相似文献   

6.
Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2 , CuCl 2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg 0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2 , CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.  相似文献   

7.
So far, very little is known about mercury stress-induced intercellular metabolic changes in rice roots at the proteome level. To investigate the response of rice roots to mercury stress, changes in protein expression in rice roots were analyzed using a comparative proteomics approach. Six-leaf stage rice seedlings were treated with 50 μmol/L HgCl2 for 3 hr; 29 protein spots showed a significant changes in abundance under stress when compared with the Hg2+-tolerant rice mutant and wild type (Zhonghua 11). Furthermore, all these protein spots were identified by mass spectrometry to match 27 diverse protein species. The identified proteins were involved in several processes, including stress response, redox homeostasis, signal transduction, regulation and metabolism; some were found to be cellular structure proteins and a few were unknown. Among the up-regulated proteins, OsTCTP (translationally controlled tumor protein) was chosen to perform hetereologous expression in yeast which was presumed to participate in the Hg2+ tolerance of rice, providing evidence for its role in alleviating Hg2+ damage. Among the many tests, we found that OsTCTP-overexpressed yeast strains were more resistant to Hg2+ than wild-type yeast. Thus, we propose that OsTCTP contributes to Hg2+ resistance. Here we present, for the first time, the functional characterization of OsTCTP in connection with Hg2+ stress in plants.  相似文献   

8.
The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg0 were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett-Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mnx+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.  相似文献   

9.
Hg2+对固定化小球藻污水净化及生理特征的影响   总被引:23,自引:0,他引:23  
利用褐藻酸钙凝胶包埋固定普通小球藻,对人工配制的含汞污水进行静态净化实验,研究了不同浓度Hg^2+对固定化小球藻净化污水中氨氮,正磷酸盐的效率及其4个生理指标(叶绿素α,光合强度,生长和过氧化物酶)的影响,并与悬浮藻对照比较。结果表明,由于小球藻的固定化增加了对Hg^2+毒性的抗性,0.2×10^-6浓度的Hg^2+对其净化效率无多大影响,而悬浮藻的净化明显下降。随着Hg^2+浓度的增加,固定藻的  相似文献   

10.
The elemental mercury removal abilities of three different zeolites (NaA, NaX, HZSM-5) impregnated with iron (III) chloride were studied on alab-scale fixed-bed reactor. X-ray diffraction, nitrogen adsorption porosimetry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD) analy-ses were used to investigate the physicochemical properties. Results indicated that the pore structure and active chloride species on the surface of the samples are the key factors for physisorption and oxidation of Hg0, respectively. Relatively high surface area and micropore volume are beneficial to efficient mercury adsorption. The active Cl species generated on the surface of the samples were effective oxidants able to convert elemental mercury (Hg0) into oxidized mercury (Hg2+). The crystallization of NaCl due to the ion exchange effect during the impregnation of NaA and NaX reduced the number of active Cl species on the surface, and restricted the physisorption of Hg0. Therefore, the Hg0 removal efficiencies of the samples were inhibited. The TPD analysis revealed that the species of mercury on the surface of FeCl3-HZSM-5 was mainly in the form of mercuric chloride(HgCl2), while on FeCl3-NaX and FeCl3-NaA it was mainly mercuri coxide(HgO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号