首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is often necessary to find a simpler method in different climatic regions to calculate reference crop evapotranspiration (ETo) since the application of the FAO‐56 Penman‐Monteith method is often restricted due to the unavailability of a comprehensive weather dataset. Seven ETo methods, namely the standard FAO‐56 Penman‐Monteith, the FAO‐24 Radiation, FAO‐24 Blaney Criddle, 1985 Hargreaves, Priestley‐Taylor, 1957 Makkink, and 1961 Turc, were applied to calculate monthly averages of daily ETo, total annual ETo, and daily ETo in an arid region at Aksu, China, in a semiarid region at Tongchuan, China, and in a humid region at Starkville, Mississippi, United States. Comparisons were made between the FAO‐56 method and the other six simple alternative methods, using the index of agreement D, modeling efficiency (EF), and root mean square error (RMSE). For the monthly averages of daily ETo, the values of D, EF, and RMSE ranged from 0.82 to 0.98, 0.55 to 0.98, and 0.23 to 1.00 mm/day, respectively. For the total annual ETo, the values of D, EF, and RMSE ranged from 0.21 to 0.91, ?43.08 to 0.82, and 24.80 to 234.08 mm/year, respectively. For the daily ETo, the values of D, EF, and RMSE ranged from 0.58 to 0.97, 0.57 to 0.97, and 0.30 to 1.06 mm/day, respectively. The results showed that the Priestly‐Taylor and 1985 Hargreaves methods worked best in the arid and semiarid regions, while the 1957 Makkink worked best in the humid region.  相似文献   

2.
This study focused on the changes of reference evapotranspiration (ET0) and pan evaporation (ETpan) to study the impacts of climate change on the hydrological cycle in the Jinghe River catchment. Based on the Penman–Monteith equation, the ET0 was calculated. The temporal trend and spatial distribution of ET0 and Epan measured with a 20-cm pan were examined at the 14 stations during 1957–2005. The effects of meteorological factors on the variation of ET0 were determined by analyzing the trends in themselves with comparison between original climate and detrended climate scenarios and then their sensitivity to ET0. Both the ET0 and Epan showed remarkable decreasing trends from 1957 to 2005 and their decreasing rate was 40.9 and 17.7 mm per 10 years, respectively. Trend analysis of meteorological factors exhibited that the reduction in ET0 and ETpan was principally caused by both significant decreases in wind speed and sunshine hours. Furthermore, the decreasing trend of ET0 was mainly dominated by the significant decrease in wind speed with high sensitivity, to a less extent, by the decrease in net radiation. Although relative humidity is one of the most sensitive variables, its effect on ET0 was negligible because of its temporal constancy. The contribution of wind speed reduction to decreased ET0 has increased from 50 to 76.1%, but net radiation, by contrast, decreased from 50 to 23.9%.  相似文献   

3.
Restored annual streamflow (Qr) and measured daily streamflow of the Chaohe watershed located in northern China and associated long‐term climate and land use/cover data were used to explore the effects of land use/cover change and climate variability on the streamflow during 1961‐2009. There were no significant changes in annual precipitation (P) and potential evapotranspiration, whereas Qr decreased significantly by 0.81 mm/yr (< 0.001) over the study period with a change point in 1999. We used 1961‐1998 as the baseline period (BP) and 1999‐2009 the change period (CP). The mean Qr during the CP decreased by 39.4 mm compared with that in the BP. From 1979 to 2009, the grassland area declined by 69.6%, and the forest and shrublands increased by 105.4 and 73.1%, respectively. The land use/cover change and climate variability contributed for 58.4 and 41.6% reduction in mean annual Qr, respectively. Compared with the BP, median and high flows in the CP decreased by 38.8 and up to 75.5%, respectively. The study concludes that large‐scale ecological restoration and watershed management in northern China has greatly decreased water yield and reduced high flows due to the improved land cover by afforestation leading to higher water loss through evapotranspiration. At a large watershed scale, land use/cover change could play as much of an important role as climate variability on water resources.  相似文献   

4.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   

5.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

6.
The impact of urbanization on groundwater is not simple to understand, as it depends on a variety of factors such as climate, hydrogeology, water management practices, and infrastructure. In semiarid landscapes, the urbanization processes can involve high water consumptions and irrigation increases, which in turn may contribute to groundwater recharge. We assessed the hydrological impacts of urbanization and irrigation rates in an Andean peri‐urban catchment located in Chile, in a semiarid climate. For this purpose, we built and validated a coupled surface–groundwater model that allows the verification of a strong stream–aquifer interaction in areas with shallow groundwater, higher than some sewers and portions of the stream. Moreover, we also identified a significant local recharge associated with pipe leaks and inefficient urban irrigation. From the evaluation of different future scenarios, we found a sustainable water conservation scenario will decrease the current groundwater levels, while the median flow reduces from 408 to 389 L/s, and the low flow (Q95%) from 43 to 22L/s. Overall, our results show the relevance of integrating the modeling of surface and subsurface water resources at different spatial and temporal scales, when assessing the effect of urban development and the suitability of urban water practices.  相似文献   

7.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

8.
The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large‐scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETref maps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.  相似文献   

9.
Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness.  相似文献   

10.
We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water‐level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, = 0.020) between 1977‐1999 and 2000‐2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open‐water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, = 0.006) between 1977‐1999 and 2000‐2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (= 0.006) and in Kabetogama Lake from 57 to 50 (= 0.006) between 1977‐1999 and 2000‐2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water‐level management plan.  相似文献   

11.
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.  相似文献   

12.
This paper explores the performance of the analysis‐and‐assimilation configuration of the National Water Model (NWM) v1.0 in Iowa. The NWM assimilates streamflow observations from the United States Geological Survey (USGS), which increases the performance but also limits the available data for model evaluation. In this study, Iowa Flood Center Bridge Sensors (IFCBS) data provided an independent nonassimilated dataset for evaluation analyses. The authors compared NWM outputs for the period between May 2016 and April 2017, with two datasets: USGS streamflow and velocity observations; Stage and streamflow data from IFCBS. The distribution of Spearman rank correlation (rs), Nash–Sutcliffe efficiency (E), and Kling–Gupta efficiency (KGE) provided quantification of model performance. We found the performance was linked with the spatial scale of the basins. Analysis at USGS gauges showed the strongest performance in large (>10,000 km2) basins (rs = 0.9, E = 0.9, KGE = 0.8), with some decrease at small (<1,000 km2) basins (rs = 0.6, E = ?0.25, KGE = ?0.2). Analysis with independent IFCBS observations was used to report performance at large basins (rs = 0.6, KGE = 0.1) and small basins (rs = 0.2, KGE = ?0.4). Data assimilation improves simulations at downstream basins. We found differences in the characterization of the model and observed data flow velocity distributions. The authors recommend checking the connection of USGS gauges and NHDPlus reaches for selected locations where performance is weak.  相似文献   

13.
We performed a detailed analysis of the potential future costs and performance of post-combustion CO2 absorption in combination with a natural gas combined cycle (NGCC). After researching state-of-the-art technology, an Excel model was created to analyze possible developments in the performance of energy conversion, CO2 capture, and CO2 compression. The input variables for the three time frames we used were based on literature data, product information, expert opinions, and our own analysis. Using a natural gas price of 4.7 €/GJ, we calculated a potential decrease in the costs of electricity from 5.6 €ct/kWh in the short term to 4.8 €ct/kWh in the medium term and 4.5 €ct/kWh in the long term. The efficiency penalty is calculated to decline from 7.9%-points LHV in the short term to 4.9%-points and 3.7%-points in the medium and long terms, respectively. In combination with NGCC improvements, this may cause an improvement in the net efficiency, including CO2 capture, from 49% in the short term to 55% and 58% in the medium and long terms, respectively. The total capital costs including capital costs of the NGCC ware calculated to decline from 880 in the short term to 750 and 690 €/kW in the medium and long terms, respectively, with a decline in the incremental capital costs due to capture from 350 in the short term to 270 and 240 €/kW in the medium and long terms, respectively. Finally, the avoidance costs may decline from 45 €/tCO2 in the short term to 33 €/tCO2 in the medium term and 28 €/tCO2 in the long term.  相似文献   

14.
Measurements of xylem water potential, leaf conductance, and leaf pressure–volume characteristics on the geothermal endemic Dichanthelium lanuginosum var. thermale (DILA) were used to delineate operational ranges during wet and dry years and among several microsites at Little Geysers, Sonoma County, California, USA. Plants seldom experienced water potentials more negative that −1.5 MPa. Other nongeothermal, widespread species experienced the lower water potentials typical of chaparral and woodland plants. DILA was able to effectively utilize geothermal water while the widespread species could not and was able to keep stomata open during most of the year. There was evidence to suggest that DILA had some ability to acclimate with significant shifts in Πo and ψo during the dry 1994 summer, especially in the upland microhabitat. Nevertheless, minimum leaf turgor values in the upland came very close to, or dropped below, the 0.2–0.3 MPa threshold thought necessary to maintain stomatal opening and photosynthesis. DILA thus depends upon the unique water status of fumarole soils in the vicinity of the Little Geysers to persist in an otherwise lethal regional mosaic of climate, soil, and vegetation. The physiological data were used to derive reference ranges for subsequent monitoring of DILA at Little Geysers. Such ranges are required to determine the future impact, if any, of geothermal development on the persistence of this rare grass and its complex ecosystem.  相似文献   

15.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   

16.
By analyzing how the largest CO2 emitting electricity-generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post-combustion CO2 capture technologies. The utilization of pulverized coal generation with carbon dioxide capture and storage (PC + CCS) technologies is particularly significant in a world where there is uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper's analysis shows that within this one large, heavily coal-dominated electricity-generating region, as much as 20–40 GW of PC + CCS could be operating before the middle of this century. Depending upon the state of PC + CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either pre-existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC + CCS generation units are in addition to a much larger deployment of CCS-enabled coal-fueled integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC + CCS and IGCC + CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 Gt of CO2 before the middle of this century in the region's deep geologic storage formations.  相似文献   

17.
Long-term integrity of existing wells in a CO2-rich environment is essential for ensuring that geological sequestration of CO2 will be an effective technology for mitigating greenhouse gas-induced climate change. The potential for wellbore leakage depends in part on the quality of the original construction as well as geochemical and geomechanical stresses that occur over its life-cycle. Field data are essential for assessing the integrated effect of these factors and their impact on wellbore integrity, defined as the maintenance of isolation between subsurface intervals. In this report, we investigate a 30-year-old well from a natural CO2 production reservoir using a suite of downhole and laboratory tests to characterize isolation performance.These tests included mineralogical and hydrological characterization of 10 core samples of casing/cement/formation, wireline surveys to evaluate well conditions, fluid samples and an in situ permeability test. We find evidence for CO2 migration in the occurrence of carbonated cement and calculate that the effective permeability of an 11′-region of the wellbore barrier system was between 0.5 and 1 milliDarcy. Despite these observations, we find that the amount of fluid migration along the wellbore was probably small because of several factors: the amount of carbonation decreased with distance from the reservoir, cement permeability was low (0.3–30 microDarcy), the cement–casing and cement-formation interfaces were tight, the casing was not corroded, fluid samples lacked CO2, and the pressure gradient between reservoir and caprock was maintained. We conclude that the barrier system has ultimately performed well over the last 3 decades. These results will be used as part of a broader effort to develop a long-term predictive simulation tool to assess wellbore integrity performance in CO2 storage sites.  相似文献   

18.
In this study, we evaluated the European Space Agency Climate Change Initiative soil moisture product v02.1 (ESA CCI SM v02.1) using in situ observations collected at 547 stations in China from 1991 to 2013. A conventional validation was first conducted, and the triple collocation errors of ESA CCI SM and the European Centre for Medium Range Weather Forecasting reanalysis data were approximately 0.053 and 0.050 m3/m3, respectively. To obtain more reliable validation results, the average soil moisture of the in situ observations per ESA CCI SM pixel was also used as the validation sites. Variance reduction factor (VRF) was adopted to quantify the accuracy of the soil moisture validation sites, and the average VRF was estimated at 4.88%. The validation results were enhanced by excluding validation sites with VRF errors greater than 5% from the statistical analysis. Although the ESA CCI SM underestimated the in situ observations with a Bias of 0.05 m3/m3, a moderately high correlation coefficient of 0.44 and a relatively small unbiased root‐mean‐square difference of 0.05 m3/m3 were observed. This study provides information on the utilization of ESA CCI SM for ecological protection, climate change, and hydrological forecasting. It also suggests the adoption of VRF for future error corrections of satellite‐based products.  相似文献   

19.
We examined nitrate processing in headwater stream reaches downstream of two wastewater treatment plant outfalls during low streamflow. Our objectives were to quantify nitrate mass flux before and after effluent discharge and to use field and laboratory techniques to assess the mechanism of nitrate uptake. Microcosm experiments were utilized to determine the location of nitrate processing, and molecular biomarkers were used to detect and quantify microbial denitrification. At one site, downstream nitrate mass flux was significantly (= 0.01) lower than sum of upstream and wastewater effluent fluxes, indicating rapid stream assimilation of incoming nitrate in the vicinity of the point source. Microcosm experiments supported the theory that nitrate processing occurs in sediments. Molecular assays for denitrifcation‐associated functional genes nosZ, nirS, and nirK, provided evidence that effluent contained enriched denitrifying communities relative to ambient stream water. Nitrate loss at the site with greater uptake was correlated with sulfate loss (< 0.01; r2 = 0.86), suggesting a possible link between sulfate reducing bacteria and denitrifying bacterial communities. Results suggest there is an opportunity to better understand nitrate dynamics in cases where point sources may act as point sinks under specific sets of conditions.  相似文献   

20.
Nitrogen (N) losses from agricultural lands in the Midwest United States are contributing to the expansion of the hypoxic zone in the Gulf of Mexico. This study evaluated the importance of inter‐annual variability in precipitation, land cover, and N fertilizer use on NO3 + NO2‐N loads in seven United States Midwestern Rivers using the backward stepwise regression analysis. At the annual scale, fluctuations in the current and previous years’ precipitations explained much of the variation in streamflow, baseflow, and N‐load. Previous years precipitation effects were associated with fillable soil porosity. In some years, higher residual soil N from previous dry years also contributed to an increase in N‐load. Area under soybean production (SOY), a surrogate for replacement of prairies and small grains was generally not a significant explanatory variable. Fertilizer use from 1987 to 2012 was also not a significant explanatory variable in the annual analysis. Precipitation in both the current and previous months and previous year were important in explaining variation in monthly streamflow, baseflow, and N‐load. SOY was significant in one or two months from June to August, but had a higher p‐value than precipitation. We conclude recent increases in river N‐loads are primarily due to wet climate and minimally due to the changes in land cover or N fertilizer use. Under current cropping systems and agronomic N application rates, tile water remediation will be necessary to reduce river N‐loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号