首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The increasing amount of UV-B radiation (280 to 320 nm) reaching the earth's surface could endanger transparent fish and zooplankton in upper water layers. Previous studies on marine fish eggs and larvae focused mainly on the effects of high, lethal doses of ultraviolet irradiation. Now a sensitive test for accumulated, sublethal impairments of physiological performance has been established. In developing fish larvae (Pleuronectes platessa L.), the respiratory control responses to hypoxia were evaluated by combining a biocybernetical approach and a novel optical test system. Before testing respiratory control behavior, the larvae were irradiated with light containing UV-B (test individuals) or free from it (control individuals). Differences in the physiological reactions of these larvae were detected by biocybernetical analysis (linear systems analysis) of respiratory control. The analysis was based on the evaluation of changes in ventilatory rate caused by sinusoidally modulated partial pressures of ambient oxygen. The ventilatory movements of the larvae were recorded, analyzed and evaluated by video microscopy and digital image processing. After several days of irradiation with moderate UV-B doses or intensities (8.6 kJ m−2 d−1, corresponding to an irradiance of 0.24 W m−2 for 10 h), sublethal impairments of respiratory control could be detected in plaice larvae by this method; both the linearity of respiratory control itself and the parameters of linear control behavior were affected by UV-B. Concerning environmental implications, the results must still be interpreted cautiously, because natural irradiation conditions are more complex than the artificial regimen. Our biocybernetical approach will be useful for further studies on sublethal impairments of physiological functions caused by UV-B in fish and other transparent marine or limnic animal groups. In addition, the method could be used to test the sublethal impact of chemical contaminants. Received: 4 November 1997 / Accepted: 6 May 1998  相似文献   

2.
In the Gulf of St. Lawrence, Canada, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. The eggs and larvae of several commercially important marine invertebrates and fishes (e.g. Gadus morhua L.) are found in this layer. Measurements of the diffuse attenuation coefficients for ultraviolet-B radiation (280 to 320 nm, UV-B) at various locations in this geographic region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates at a given wavelength) of 3 to 4 m at a wavelength of 310 nm. This represents a significant percentage of the summer mixed-layer water column: organisms residing in this layer are exposed to UV-B radiation. Laboratory experiments using a Xenon-arc-lamp based solar simulator revealed that cod embryos exposed to UV-B exhibited high wavelength-dependent mortality. The strongest effects occurred under exposures to wavelengths below 312 nm. This susceptibility was also dependent upon developmental stage; mortality was particularly high during gastrulation. At the shorter wavelengths (<305 nm) UV-B-induced mortality was strongly dose-dependent, and not significantly influenced by dose-rate. The biological weighting function (BWF) derived for UV-B-induced mortality in cod eggs is similar to that reported for naked DNA – suggesting that the mortality is a direct result of DNA damage. There was no evidence of a detrimental effect of ultraviolet-A radiation (320 to 400 nm). Calculations based upon the BWF indicate that, under current noon surface irradiance, 50% of cod eggs located at or very near (within 10 cm) the ocean surface will be dead after 42 h of exposure. Under solar spectral irradiance simulating a 20% decrease in ozone layer thickness, this time drops to 32 h. These are first-order estimates based upon surface irradiance taken at a time of day during which the values would be maximal. Nonetheless, they illustrate the relative changes in UV-B impacts that will result from ozone layer depletions expected over the coming decades. It is also important to point out that variability in cloud cover, water quality, and vertical distribution and displacement of cod eggs and larvae within the mixed layer, can all have a greater effect on the flux of UV-B radiation to which fish eggs are exposed than will ozone layer depletion at these latitudes. Received: 2 March 1998 / Accepted: 18 December 1998  相似文献   

3.
The copepod Calanus finmarchicus Gunnerus is a key component of the planktonic food web in the Gulf of St. Lawrence, Canada. In this region, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. The eggs and nauplii of C. finmarchicus are found in this layer. Measurements of the diffuse attenuation coefficients for solar ultraviolet-B radiation (280 to 320 nm, UV-B) at various locations in this region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates) of 3 to 4 m at a wavelength of 310 nm. This represents a significant percentage of the summer mixed-layer water column: organisms residing in this layer are exposed to UV-B radiation. Laboratory experiments using a Xenon-arc-lamp based solar simulator revealed that C. finmarchicus embryos exposed to UV-B exhibited high wavelength-dependent mortality. The strongest effects occurred under exposures to wavelengths below 312 nm. A significant percentage of nauplii hatched from eggs exposed to these wavelengths exhibited malformations indicative of errors in pattern formation during embryogenesis. At the shorter wavelengths (<305 nm), UV-B-induced mortality was strongly dependent on cumulative exposure. The biological weighting function (BWF) derived for UV-B-induced mortality in C. finmarchicus eggs is similar to that reported for naked DNA. This suggests that the UV-B-induced mortality effect on C. finmarchicus embryos is a direct result of DNA damage. There was no evidence of a detrimental effect of ultraviolet-A radiation (320 to 400 nm). Calculations based upon the BWF indicate that, under current noon surface irradiance, 50% of C. finmarchicus eggs located at or very near (within 10 cm) the ocean surface will be dead after 2.5 h of exposure. Under solar spectral irradiance simulating a 20% decrease in ozone layer thickness, this time drops to 2.2 h. These are first-order estimates based upon irradiance taken at a time of day during which the values would be maximal. Nonetheless, they illustrate the relative changes in UV-B effects that will result from ozone layer depletions expected over the coming decades. It is also important to point out that variability in cloud cover, water quality, and vertical distribution and displacement within the mixed layer, can all have a greater effect on the flux of UV-B radiation to which C. finmarchicus eggs are exposed than will ozone layer depletion at these latitudes. Received: 2 March 1998 / Accepted: 18 December 1998  相似文献   

4.
The seasonal productivity cycle and factors controlling annual variation in the timing and magnitude of the winter–spring bloom were examined for several locations (range: 42°20.35′–42°26.63′N; 70°44.19′–70°56.52′W) in Boston Harbor and Massachusetts Bay, USA, from 1995 to 1999, and compared with earlier published data (1992–1994). Primary productivity (mg C m−2 day−1) in Massachusetts Bay from 1995 to 1999 was generally characterized by a well-developed winter–spring bloom of several weeks duration, high but variable production during the summer, and a prominent fall bloom. The bulk of production (mg C m−3 day−1) typically occurred in the upper 15 m of the water column. At a nearby Boston Harbor station a gradual pattern of increasing areal production from winter through summer was more typical, with the bulk of production restricted to the upper 5 m. Annual productivity in Massachusetts Bay and Boston Harbor ranged from a low of 160 g C m−2 year−1 to a high of 787 g C m−2 year−1 from 1992 to 1999. Mean annual productivity was higher (mean=525 g C m−2 year−1) and more variable near the harbor entrance than in western Massachusetts Bay. At the harbor station productivity varied more than 3.5-fold (CV=40%) over an 8 year sampling period. Average annual productivity (305–419 g C m−2 year−1) and variability around the means (CV=25–27%) were lower at both the outer nearfield and central nearfield regions of Massachusetts Bay. Annual productivity in 1998 was unusually low at all three sites (<220 g C m−2 year−1) due to the absence of a winter–spring phytoplankton bloom. Potential factors influencing the occurrence of a spring bloom were investigated. Incident irradiance during the winter–spring period was not significantly different (P > 0.05) among years (1995–1999). The mean photic depth during the bloom period was significantly deeper (P < 0.05) in 1998, signifying greater light availability with depth. Nutrients were also in abundance during the winter–spring of 1998 with stratified conditions not observed until May. In general, the magnitude of the winter–spring bloom in Massachusetts Bay from 1995 to 1999 was significantly correlated with winter water temperature (r 2=0.78) and zooplankton abundance (r 2=0.74) over the bloom period (typically February–April). The absence of the 1998 bloom was associated with higher than average water temperature and elevated levels of zooplankton abundance just prior to, and during, the peak winter–spring bloom period. Received: 3 July 2000 / Accepted: 6 December 2000  相似文献   

5.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

6.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

7.
In situ measurements of seagrass photosynthesis in relation to inorganic carbon (Ci) availability, increased pH and an inhibitor of extracellular carbonic anhydrase were made using an underwater pulse amplitude modulated (PAM) fluorometer. By combining the instrument with a specially designed Perspex chamber, we were able to alter the water surrounding a leaf without removing it from the growing plant. Responses to Ci within the chamber showed that subtidal plants of the seagrasses Cymodocea serrulata and Halophila ovalis had photosynthetic rates that were limited by the ambient Ci concentration depending on the irradiance that was available during short-term photosynthesis–irradiance trials. Relative electron transport rates (RETRs) at light saturation (up to 500 μ mol photons m−2 s−1) increased by 66–100% when the Ci concentration was increased from ca. 2.2 to 6.2 mM. On the other hand, intertidal plants of the same species exhibited a much lesser limitation of photosynthesis by Ci at any irradiance (up to 1500 μ mol photons m−2 s−1). Both species were able to use HCO 3 efficiently, and there was stronger evidence for direct uptake of HCO 3 rather than extracellular dehydration of HCO 3 to CO2 prior to Ci uptake. Subtidally, H. ovalis and C. serrulata grew to 10 and 12 m, respectively, where ambient irradiances were approximately 16 and 11% of those at the surface. Maximum RETRs (at light saturation) were lower for these deep-growing plants than for the intertidally growing ones. For both species, the onset of light saturation of photosynthesis (E k) occurred at approximately 100 μ mol photons m−2 s−1 for the deep water populations, which was four and two times lower than for the shallow populations of C. serrulata and H. ovalis, respectively. This, and the differences in maximal photosynthetic rates (RETR max), reflects an acclimation of the deep-growing populations to the lower light environment. The results presented here show that photosynthesis, as measured in situ, was limited by the availability of Ci for the deeper growing plants in Zanzibar, while the intertidally growing plants photosynthesised at close to Ci saturation. The latter result is contrary to previous conclusions regarding Ci limitations for these intertidal plants, and, in general, our findings highlight the need for performing similar experiments in situ rather than under laboratory conditions. Received: 4 April 2000 / Accepted: 31 August 2000  相似文献   

8.
Assessments of photosynthetic activity in marine plants can now be made in situ using a newly developed, submersible, pulse-amplitude modulated (PAM) fluorometer: Diving-PAM. PAM fluorometry provides a measure of chlorophyll a fluorescence using rapid-light curves in which the electron-transport rate can be determined for plants exposed to ambient light conditions. This technique was used to compare the photosynthetic responses of seagrasses near Rottnest Island, Western Australia. Several fluorescence parameters were measured as a function of time of day and water depth; electron-transport rate (ETR), quantum yield, photochemical quenching and non-photochemical quenching and Photosystem II (PSII) photochemical efficiency (F v :F m ratio) were measured. Results indicate that recent light-history plays a crucial role in seagrass photosynthetic responses. Maximum ETR of Posidonia australis, Amphibolis antarctica and Halophila ovalis is influenced by the irradiance during the diurnal cycle, with low rates at dawn and dusk (<10 μmol electron m−2 s−1), highest rates in late morning (40 to 60 μmol electron m−2 s−1) and a mid-day depression. Maximum ETR and PSII photochemical efficiency varied widely between seagrass species and were not correlated. A comparison of photochemical to non-photochemical quenching indicated that seagrasses in shallow water receiving high light have a high capacity for non-photochemical quenching (e.g. light protection) compared to seagrasses in deep water. These results indicate that in situ measurements of photosynthesis will provide new insights into the mechanisms and adaptive responses of marine plants. Received: 26 May 1997 / Accepted: 27 May 1998  相似文献   

9.
S. Beer  M. Ilan 《Marine Biology》1998,131(4):613-617
Photosynthetic responses to irradiance by the photosymbionts of the two Red Sea sponges Theonella swinhoei (Gray) and Clionavastifica (Hancock) growing under dim light conditions were measured in situ (in September 1997) using a newly developed underwater pulse amplitude modulated (PAM) fluorometer. Relative rates of photosynthetic electron transport (ETR) were calculated as the effective quantum yield of photosystem II (Y ) multiplied with the photosynthetic photon flux (PPF). Photosynthesis versus irradiance (P-I ) curves, obtained within minutes, showed that individual specimens of both sponges, growing under very low light conditions, feature lower light saturation points as well as lower maximal ETRs than individuals growing under higher light. Evaluations of such curves using low irradiances of the actinic light source (20 to 130 μmol photons m−2 s−1) showed a general decrease in Y, with a shoulder from the lowest irradiance applied till 20 to 30 μmol photons m−2 s−1. Point measurements yielded ETRs close to what could be estimated from the P-I curves. These point measurements also revealed good correlations between the diurnally changing ambient irradiances (1 to 50 μmol photons m−2 s−1) and average ETR values for both species. Further analysis showed that although Y values varied considerably between the different point measurements, they did not decrease significantly with light under these very low irradiances. Therefore, PPF rather than Y seems to determine the in situ diel photosynthetic performance at the low ambient irradiances experienced by these sponges. Received: 22 November 1997 / Accepted: 8 April 1998  相似文献   

10.
Three marine diatoms Lauderia annulata Cleve, Odontella sinensis (Greville) Grunow and Thalassiosira rotula Meunier were exposed to ultraviolet (UV) radiation of different wavebands under controlled laboratory conditions (0.035 vol% CO2, 18 °C). Several changes in the patterns of pigments in these organisms were seen depending on the waveband of UV radiation and species examined. UV-B and UV-B plus UV-A radiation led to a reduction in the overall pigment content of all three diatoms. The uptake of 15N-ammonium was less affected by 5-h UV-A (WG 320) but significantly reduced after UV-B and UV-B plus UV-A exposure. The pattern of free amino acid pools varied depending on the applied UV wavebands and the tested diatom. The main protein-bound amino acids of T. rotula decreased after 5-h UV irradiance except leucine. Contents of adenosine 5′-mono-, di-, and triphosphate (AMP, ADP and ATP) were affected differently by UV radiation; ATP values increased at the end of UV-B and UV-B plus UV-A exposure. These results have been discussed with reference to the impact of the different UV sources and the influence on the nitrogen metabolism in connection to pigments and supply with energy. Received: 13 May 1997 / Accepted: 11 October 1997  相似文献   

11.
The effects of ultraviolet radiation on phytoplankton are usually described as a function of dose (J m–2, weighted appropriately). Experiments conducted in 1988 and 1989 on a marine diatom,Thalassiosira pseudonana (Clone 3H), demonstrate that during lightlimited photosynthesis in visible radiation, the inhibition of photosynthesis by supplemental ultraviolet radiation (principally UV-B: 280 to 320 nm) is a function of irradiance (W m–2) as well as of dose: for equal doses of UV-B, a relatively short exposure to high UV-B irradiance is more damaging to photosynthesis than a longer exposure to lower irradiance. In fact, photoinhibition by UV-B is well described as a monotonic, nonlinear function of irradiance for time scales of 0.5 to 4 h. A nitrate-limited culture was about nine times more sensitive to UV-B than was a nutrient-replete culture, but the kinetics of photoinhibition were similar. These results have some bearing on efforts to describe the effects of ultraviolet radiation on marine primary productivity. Action spectra of photoinhibition by UV can be constructed, but they should only be used to describe photoinhibition for specified time scales. Vertical profiles of relative photoinhibition must be interpreted cautiously because photoinhibition by UV-B is likely to be a function of incubation time and results must therefore be interpreted in the context of vertical mixing.  相似文献   

12.
 The physico-chemical microenvironment of larger benthic foraminifera was studied with microsensors for O2, CO2, pH, Ca2+ and scalar irradiance. Under saturating light conditions, the photosynthetic activity of the endosymbiotic algae increased the O2 up to 183% air saturation and a pH of up to 8.6 was measured at the foraminiferal shell surface. The photosynthetic CO2 fixation decreased the CO2 at the shell down to 4.7 μM. In the dark, the respiration of host and symbionts decreased the O2 level to 91% air saturation and the CO2 concentration reached up to 12 μM. pH was lowered relative to the ambient seawater pH of 8.2. The endosymbionts responded immediately to changing light conditions, resulting in dynamic changes of O2, CO2 and pH at the foraminiferal shell surface during experimentally imposed light–dark cycles. The dynamic concentration changes demonstrated for the first time a fast exchange of metabolic gases through the perforate, hyaline shell of Amphistegina lobifera. A diffusive boundary layer (DBL) limited the solute exchange between the foraminifera and the surrounding water. The DBL reached a thickness of 400–700 μm in stagnant water and was reduced to 100–300 μm under flow conditions. Gross photosynthesis rates were significantly higher under flow conditions (4.7 nmol O2 cm−3 s−1) than in stagnant water (1.6 nmol O2 cm −3 s−1), whereas net photosynthesis rates were unaffected by flow conditions. The Ca2+ microprofiles demonstrated a spatial variation in sites of calcium uptake over the foraminiferal shells. Ca2+ gradients at the shell surface showed total Ca2+ uptake rates of 0.6 to 4.2 nmol cm−2 h−1 in A. lobifera and 1.7 to 3.6 nmol cm−2 h−1 in Marginopora vertebralis. The scattering and reflection of the foraminiferal calcite shell increased the scalar irradiance at the surface up to 205% of the incident irradiance. Transmittance measurements across the calcite shell suggest that the symbionts are shielded from higher light levels, receiving approximately 30% of the incident light for photosynthesis. Received: 6 July 1999 / Accepted: 28 April 2000  相似文献   

13.
We analysed growth of the Antarctic bryozoan Melicerita obliqua (Thornely, 1924) by x-ray photography and stable isotope analysis. M. obliqua colonies form one segment per year, thus attaining maximum length of about 200 mm within 50 years. In the Weddell and Lazarev Seas, annual production/biomass ratio of M. obliqua is 0.1 yr−1, which is in the range of other Antarctic benthic invertebrate populations. Production amounts to 3.34 mg Corg m−2 yr−1 and 90.6 mg ash m−2 yr−1 on the shelf (100 to 600 m water depth), and to 0.13 mg Corg m−2 yr−1 and 36.8 mg ash m−2 yr−1 on the slope (600 to 1250 m water depth). Received: 27 February 1998 / Accepted: 8 May 1998  相似文献   

14.
In this study, we tested the hypothesis that the importance of water flow for skeletal growth (rate) becomes higher with increasing irradiance levels (i.e. a synergistic effect) and that such effect is mediated by a water flow modulated effect on net photosynthesis. Four series of nine nubbins of G. fascicularis were grown at either high (600 μE m−2 s−1) or intermediate (300 μE m−2 s−1) irradiance in combination with either high (15–25 cm s−1) or low (5–10 cm s−1) flow. Growth was measured as buoyant weight and surface area. Photosynthetic rates were measured at each coral’s specific experimental irradiance and flow speed. Additionally, the instantaneous effect of water flow on net photosynthetic rate was determined in short-term incubations in a respirometric flowcell. A significant interaction was found between irradiance and water flow for the increase in buoyant weight, the increase in surface area, and specific skeletal growth rate, indicating that flow velocity becomes more important for coral growth with increasing irradiance levels. Enhancement of coral growth with increasing water flow can be explained by increased net photosynthetic rates. Additionally, the need for costly photo-protective mechanisms at low flow regimes could explain the differences in growth with flow.  相似文献   

15.
Production rates, chlorophyll concentrations and general composition of periphytic diatom communities growing on glass slides were studied in relation to environmental parameters during one seasonal cycle in the Bay of Paranaguá, southern Brazil. Slides were routinely submersed at 1, 2 and 3 m depth and recovered weekly for microscopic examinations, analyses of chlorophyll, cell counts and in situ photosynthetic incubations using the Winkler titration method. Water samples were also collected at surface and bottom layers for determinations of temperature, salinity, nutrients and chlorophyll in the water. The periphytic community was mainly formed by epipelic and epipsammic species, dominated by Navicula phyllepta, Cylindrotheca closterium, Navicula spp. and Amphora sp. Weekly chlorophyll a and cell accumulations on slides varied from <1–32 mg m−2 and up to 31 × 108 cells m−2, respectively. Photosynthetic rates varied from <1 to 35 mg oxygen mg chlorophyll a −1 h−1, with higher values in summer. Daily production varied from 5 to 3,600 mg oxygen m−2 day−1 (<0.01–1.4 g carbon m−2 day−1). Multiple regression analysis revealed that vertical differences in light conditions and grazing pressure jointly affected the influence of temperature on the seasonal patterns of cell densities and chlorophyll concentrations according to depth. Received: 27 April 2000 / Accepted: 16 August 2000  相似文献   

16.
 The abundance and biomass of Corophium multisetosum Stock, 1952 were determined from benthic corer samples collected monthly over 1 yr in the upper reaches of Canal de Mira (Ria de Aveiro, Portugal). Both density and biomass over the sampling period were negatively correlated with water temperature and positively correlated with chlorophyll a concentration in the sediment. C. multisetosum density was significantly negatively correlated with plant biomass and positively correlated with salinity. The nature of the sediment, favourable environmental conditions, high availability of food and low interspecific competition allowed the population to reach a maximal density of 200 × 103 individuals m−2 and a maximal biomass (ash-free dry wt, AFDW) of 62 gAFDW m−2. The population was highly productive, especially during the autumn/winter period. Production, estimated by two different methods (Hynes method: 251 gAFDW m−2 yr−1; Morin–Bourassa method: 308 gDW m−2 yr−1), was much higher than the values reported for other Corophium species. The annual P:Bˉ ratio (10) was high, but similar to values reported for Swedish populations of C. volutator and lower than the values estimated from Mediterranean populations of C. insidiosum. Received: 8 October 1999 / Accepted: 22 June 2000  相似文献   

17.
 A survey of the distribution and maximum depth of a continuous Fucus vesiculosus belt was carried out in the Gulf of Finland in 1991. F. vesiculosus is widely distributed throughout the Gulf of Finland, including the vicinity of Vyborg Bay, Russia in the east. The maximum growth depth of F. vesiculosus in the Gulf of Finland reflects two different patterns according to the exposure to wave action. The most robust and continuous F. vesiculosus belt is observed on exposed shores, where the maximum growth depth is 5 to 6 m, with the optimum at 2 to 3 m. On moderately exposed shores the maximum growth depth is 3 m, with an optimum growth depth of <2 m. The maximum growth depth also varies geographically, with a decreasing trend towards the east. Maximum growth depth of F. vesiculosus correlates with light intensity. The compensation point for F. vesiculosus photosynthesis is about 25 μmol m−2 s−1, and photosynthesis is saturated at a light intensity of 300 μmol m−2 s−1. Vertical irradiance attenuation measurements in situ in summer revealed that for F. vesiculosus photosynthesis the quantity of light is optimal (200 to 300 μmol m−2 s−1) at <3 m depth. At depths >5 m the quantity of light is near or below the photosynthesis compensation point and insufficient for growth. These depth limits of light penetration coincide with measured growth depths of F. vesiculosus in the Gulf of Finland. Received: 7 May 1999 / Accepted: 18 November 1999  相似文献   

18.
E. Mutlu 《Marine Biology》2001,138(2):329-339
The distribution of moon jellyfish (Aurelia aurita Linnaeus, 1758) in the Black Sea was determined from plankton samples collected above the anoxic zone (maximum depth 200 m) in the summer, winter and spring during 1991–1995. Distribution was patchy. Average biomass ranged from 98 to 380 g m−2, and abundance varied from 2 to 14 individuals m−2. Biomass and abundance peaked in late spring and summer. The distribution was correlated with hydrographic features in the Black Sea, with higher concentrations occurring at the peripheries of anticyclonic eddies. Centers of the two main cyclonic gyres generally had a low biomass of A. aurita. From July 1992 to March 1995, the populations were largely concentrated in offshore regions. A. aurita were confined to the upper part of the mixed layer. Smaller A. aurita (≤1 cm) were present in early spring (March), and individuals reached maximum size in the summer. Release of the epyhrae occurred in spring on the northwestern shelf of the sea when the seawater temperature was 11–12 °C. Microscopic analysis of stomach contents showed that copepods and mollusks form their main diet. Received: 3 September 2000 / Accepted: 29 September 2000  相似文献   

19.
Seasonal sampling was carried out based on day/night, vertically stratified tows (100 or 125 m strata) in the upper 900 m of the water column over the mid-slope commercial fishing grounds south of Tasmania. A large midwater trawl (105 m2 mouth area) was used with an opening/closing cod-end. Subtropical convergence and subtropical species dominated the fauna, but many less abundant, more widely-distributed species were also present. Fishes, which contributed 89% of micronekton biomass and 135 of 178 species, were dominated by the Myctophidae (48% biomass and 48 species). Twenty micronekton species made up 80% of the total biomass. Overall, the micronekton fish biomass in this region was 2.2 g m−2 wet weight. A pronounced day/night shift in the distribution of biomass was attributable to diel migratory species. During the day, <0.2% of the total micronekton biomass was found in 0 to 300 m; most biomass was below 400 m, with peaks at 400 to 525 m and 775 to 900 m. At night, 53% of the biomass was found in 0 to 300 m, with progressively less in each deeper stratum. The vertical ranges of individual species typically exceeded 400 to 500 m during the day and night and were non-coincident, although nyctoepipelagic migrators were concentrated in the surface 200 m at night. Distinct epipelagic, lower and upper mesopelagic assemblages were identified, and patterns of epipelagic migration, limited migration and non-migration were categorised for species from each of the lower and upper mesopelagic assemblages. The vertical distribution of these assemblages was coincident with the primary water masses: subantarctic mode water (∼250 to 600 m) and antarctic intermediate water (below ∼700 m). The flux of migrating micronekton, estimated at 0.94 to 3.36 g C m−2 yr−1 to the lower mesopelagic and 1.14 to 4.06 g C m−2 yr−1 to the upper mesopelagic, appeared to be considerably outweighed by the consumption needs of aggregated mid-slope benthopelagic predators. We suggest that advection of mesopelagic prey in antarctic intermediate water may sustain aggregated populations of orange roughy (Hoplostethus atlanticus) and other predators on the micronekton in mid-slope depths at this site. Received: 2 April 1997 / Accepted: 21 August 1997  相似文献   

20.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号