首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract: Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.  相似文献   

2.
《Conservation biology》2006,20(5):1457-1465
Abstract:  Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog [Rana sphenocephala ]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.  相似文献   

3.
Many studies have examined differences in avian community composition between urban and rural habitats, but few, if any, have looked at nesting success of urban shrubland birds in a replicated fashion while controlling for habitat. We tested factors affecting nest survival, parasitism by the Brown-headed Cowbird (Molothrus ater), and species abundance in shrubland habitat in rural and urban landscapes. We found no support for our hypothesis that nest survival was lower in urban landscapes, but strong support for the hypothesis that survival increased with nest height. We found strong support for our hypothesis that cowbird parasitism was greater in urban than rural landscapes; parasitism in urban sites was at least twice that of rural sites. We found strong support for an urban landscape effect on abundance for several species; Northern Cardinal (Cardinalis cardinalis) and Brown-headed Cowbirds were more abundant in urban landscapes, whereas Field Sparrow (Spizella pusilla) and Blue-winged Warbler (Vermivora pinus) were more abundant in rural sites. There was support for lower abundances of Blue-gray Gnatcatcher (Polioptila caerulea) and Indigo Bunting (Passerina cyanea) with increased housing density. For six other species, edge and trail density or vegetation parameters best explained abundance. Lower abundances and greater parasitism in habitat patches in urban landscapes are evidence that, for some species, these urban landscapes do not fulfill the same role as comparable habitats in rural landscapes. Regional bird conservation planning and local habitat management in urban landscapes may need to consider these effects in efforts to sustain bird populations at regional and local scales.  相似文献   

4.
Amphibian Breeding Distribution in an Urbanized Landscape   总被引:5,自引:0,他引:5  
Abstract:  Amphibians commonly use wetlands for breeding habitat, and given the concern about their ongoing global declines, the effects of urbanization on the breeding distribution of amphibians need to be quantified. Thus, we conducted a survey of the larval amphibian community in central Pennsylvania (U.S.A.) wetlands along an urbanization gradient. Wetlands in urban areas had less surrounding forest and wetlands and greater road density than rural wetlands. Urbanization was also associated with increases in hydroperiod (i.e., wetland permanency) and the presence of fish predators. Moreover, urban wetlands had lower larval amphibian species richness than rural wetlands. This decrease in richness was attributable to a decrease in occurrence of wood frogs ( Rana sylvatica ) and ambystomatid salamanders ( Ambystoma maculatum and A. jeffersonianum ) in urban sites. Wood frogs and ambystomatid salamanders were positively associated with the amount of forest surrounding sites and negatively associated with hydroperiod. As a result, we hypothesize that these species are sensitive to the effects of urban development. The remaining species in this study appear fairly resilient to the effects of urbanization. These data demonstrate the importance of quantifying both local and landscape attributes when describing the factors that limit the breeding distribution of amphibians. We recommend that to preserve amphibian biodiversity in urbanized landscapes, it is best to focus on regional diversity, which protects a variety of sites that encompass various hydroperiods, have adequate buffer habitat, and are connected by dispersal routes.  相似文献   

5.
Metapopulation Dynamics and Amphibian Conservation   总被引:23,自引:0,他引:23  
Abstract: In many respects, amphibian spatial dynamics resemble classical metapopulation models, in which subpopulations in breeding ponds blink in and out of existence and extinction and colonization rates are functions of pond spatial arrangement. This "ponds-as-patches" view of amphibian spatial dynamics is useful in several respects. First, it highlights the importance of regional and landscape processes in determining local patterns of abundance. Second, it offers a straightforward, pond-based approach to monitoring and managing amphibian populations. For many species, however, the ponds-as-patches view may be an oversimplification and metapopulation structure may be more apparent than real. Changes in distribution may be caused by processes other than extinction and recolonization, and most extinctions probably result from deterministic factors, not stochastic processes. In addition, the effects of pond isolation appear to be important primarily in disturbed environments, and in many cases these isolation effects may be better explained by the distribution of terrestrial habitats than by the distribution of breeding ponds. These complications have important implications for both researchers and managers. For researchers, future efforts need to determine the mechanisms underlying patterns of abundance and distributional change and patterns in amphibian populations. For managers, effective conservation strategies must successfully balance metapopulation considerations with careful attention to local habitat quality. Furthermore, translocations and active management may be indispensable tools for conserving amphibians in landscapes containing multiple breeding ponds.  相似文献   

6.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

7.
Abstract:  Despite two decades of research into the effects of habitat fragmentation and edges on nesting birds, critical information about how edges affect the success of natural nests of Neotropical migratory songbirds breeding in heterogeneous landscapes is still missing. We studied abundance and nesting success in Wood Thrushes ( Hylocichla mustelina ) breeding across a heterogeneous landscape in central New York from 1998 to 2000 to test the hypothesis that edge effects on nesting passerines are stronger in fragmented than contiguous landscapes. We monitored nests to estimate nesting success in edge and interior habitats in both fragmented and contiguously forested landscapes. In contiguous landscapes, daily survival rate did not differ between edge nests (0.963) and interior nests (0.968) (χ2= 0.19, p = 0.66). In contrast, in fragmented landscapes, daily survival estimates were higher in interior (0.971) than edge (0.953) nests (χ2= 3.1, p = 0.08). Our study supports the hypothesis that landscape composition moderates edge effects on actual nests of birds but does not determine the mechanisms causing these patterns.  相似文献   

8.
Patrick DA  Harper EB  Hunter ML  Calhoun AJ 《Ecology》2008,89(9):2563-2574
To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.  相似文献   

9.
Abstract: The concept of habitat fragmentation is limited in its ability to describe the range of possible landscape configurations created by a variety of disturbances. This limitation is especially problematic in landscapes where human use of the habitat matrix occurs at multiple levels and where habitat modification may be a more important consideration than a simple binary classification of habitat versus nonhabitat. We propose a synthesizing scheme that places intact, variegated, fragmented, and relictual landscape states on a continuum, depending on the degree of habitat destruction. At a second level, the scheme considers the patterns of habitat modification that are imposed on remaining habitats. Management for conservation involves halting and sometimes reversing the trends of habitat destruction and modification. Conservation strategies will differ according to the state of alteration of the landscape, but all strategies include some consideration of the degree of modification of the matrix in determining habitat viability. It is convenient for biologists to assess landscape alteration state in terms of the persistence of large structural elements such as trees. Because animal species use habitats differently, however, they also experience the landscape differently. A landscape considered structurally fragmented by humans may be functionally variegated to other species. Therefore, it is necessary to consider the extent to which the entire landscape, including the matrix, is accessible and utilized by organisms with different spatial scales of resource use.  相似文献   

10.
Abstract: The lack of long‐term baseline data restricts the ability to measure changes in biological diversity directly and to determine its cause. This hampers conservation efforts and limits testing of basic tenets of ecology and conservation biology. We used a historical baseline survey to track shifts in the abundance and distribution of 296 native understory species across 82 sites over 55 years in the fragmented forests of southern Wisconsin. We resurveyed stands first surveyed in the early 1950s to evaluate the influence of patch size and surrounding land cover on shifts in native plant richness and heterogeneity and to evaluate changes in the relative importance of local site conditions versus the surrounding landscape context as drivers of community composition and structure. Larger forests and those with more surrounding forest cover lost fewer species, were more likely to recruit new species, and had lower rates of homogenization than smaller forests in more fragmented landscapes. Nearby urbanization further reduced both alpha and beta understory diversity. Similarly, understory composition depended strongly on local site conditions in the original survey but only weakly reflected the surrounding landscape composition. By 2005, however, the relative importance of these factors had reversed such that the surrounding landscape structure is now a much better predictor of understory composition than are local site conditions. Collectively, these results strongly support the idea that larger intact habitat patches and landscapes better sustain native species diversity and demonstrate that humans play an increasingly important role in driving patterns of native species diversity and community composition.  相似文献   

11.
Assessing Risks to Biodiversity from Future Landscape Change   总被引:11,自引:0,他引:11  
We examined the impacts of possible future land development patterns on the biodiversity of a landscape. Our landscape data included a remote sensing derived map of the current habitat of the study area and six maps of future habitat distributions resulting from different land development scenarios. Our species data included lists of all bird, mammal, reptile, and amphibian species in the study area, their habitat associations, and area requirements for each. We estimated the area requirements using home ranges, sampled population densities, or genetic area requirements that incorporate dispersal distances. Our measures of biodiversity were species richness and habitat abundance. We calculated habitat abundance in two ways. First, we computed the total habitat area for each species in each landscape. Second, we calculated the number of habitat units for each species in each landscape by dividing the size of each habitat patch in the landscape by the area requirement and summing over all patches. Species richness was based on presence of habitat. Species became extinct in the landscape if they had no habitat area or no habitat units, respectively. We then computed ratios of habitat abundance in each future landscape to habitat abundance in the present for each species. We also computed the ratio of future to present species richness. We then calculated summary statistics across all species. Species richness changed little from present to future. There were distinctly greater risks to habitat abundance in landscapes that extrapolated from present trends or zoning patterns, however, as opposed to landscapes in which land development activities followed more constrained patterns. These results were stable when tested using Monte Carlo simulations and sensitivity tests on the area requirements. We conclude that this methodology can begin to discriminate the effects of potential changes in land development on vertebrate biodiversity.  相似文献   

12.
This study examined the influence of habitat structural complexity on the collective effects of top-down and bottom-up forces on herbivore abundance in urban landscapes. The persistence and varying complexity of urban landscapes set them apart from ephemeral agroecosystems and natural habitats where the majority of studies have been conducted. Using surveys and manipulative experiments. We explicitly tested the effect of natural enemies (enemies hypothesis), host plant quality, and herbivore movement on the abundance of the specialist insect herbivore, Stephanitis pyrioides, in landscapes of varying structural complexity. This herbivore was extremely abundant in simple landscapes and rare in complex ones. Natural enemies were the major force influencing abundance of S. pyrioides across habitat types. Generalist predators, particularly the spider Anyphaena celer, were more abundant in complex landscapes. Predator abundance was related to greater abundance of alternative prey in those landscapes. Stephanitis pyrioides survival was lower in complex habitats when exposed to endemic natural enemy populations. Laboratory feeding trials confirmed the more abundant predators consumed S. pyrioides. Host plant quality was not a strong force influencing patterns of S. pyrioides abundance. When predators were excluded, adult S. pyrioides survival was greater on azaleas grown in complex habitats, in opposition to the observed pattern of abundance. Similarly, complexity did not affect S. pyrioides immigration and emigration rates. The complexity of urban landscapes affects the strength of top-down forces on herbivorous insect populations by influencing alternative prey and generalist predator abundance. It is possible that habitats can be manipulated to promote the suppressive effects of generalist predators.  相似文献   

13.
Abstract: Little attention has been paid to fragmentation effects on organisms living in open habitats in which species may have high mobility and generalized habitat use. We investigated landscape effects on 23 farmland bird species breeding in 72 semi-natural dry pastures distributed equally among three landscape types (agricultural-dominated, mosaic, and forest-dominated) in southcentral Sweden. There were generally higher local abundances of farmland birds in pastures located in agricultural-dominated and mosaic landscapes than in forest-dominated landscapes. Species feeding on a mixed diet as well as resident species and temperate migrants were most numerous in pastures located in agricultural-dominated landscapes and least numerous in forest-dominated landscapes. While controlling for the effects of local pasture area and vegetation structure, we found that the local abundance of 18 ( 78%) farmland bird species was significantly associated with the composition and structure of the surrounding landscape. The landscape distance that explained the largest part of local variation in abundance varied among species according to the size of their breeding territories or foraging home ranges. Our results suggest that habitat use of farmland birds breeding in pastures is affected both by suitable foraging habitats in the surrounding landscape and by nest sites within local pastures. Despite the generally higher abundances of farmland birds in pastures located in agricultural-dominated landscapes, most species of European and Swedish conservation concern had higher abundance in pastures located in more forested landscapes. Thus, the rapid loss of semi-natural dry pastures in forest-dominated landscapes is a serious threat to the future of these species in Sweden.  相似文献   

14.
Abstract:  Urbanization negatively affects natural ecosystems in many ways, and aquatic systems in particular. Urbanization is also cited as one of the potential contributors to recent dramatic declines in amphibian populations. From 2000 to 2002 we determined the distribution and abundance of native amphibians and exotic predators and characterized stream habitat and invertebrate communities in 35 streams in an urbanized landscape north of Los Angeles (U.S.A.). We measured watershed development as the percentage of area within each watershed occupied by urban land uses. Streams in more developed watersheds often had exotic crayfish ( Procambarus clarkii ) and fish, and had fewer native species such as California newts ( Taricha torosa ) and California treefrogs ( Hyla cadaverina ). These effects seemed particularly evident above 8% development, a result coincident with other urban stream studies that show negative impacts beginning at 10–15% urbanization. For Pacific treefrogs ( H. regilla ), the most widespread native amphibian, abundance was lower in the presence of exotic crayfish, although direct urbanization effects were not found. Benthic macroinvertebrate communities were also less diverse in urban streams, especially for sensitive species. Faunal community changes in urban streams may be related to changes in physical stream habitat, such as fewer pool and more run habitats and increased water depth and flow, leading to more permanent streams. Variation in stream permanence was particularly evident in 2002, a dry year when many natural streams were dry but urban streams were relatively unchanged. Urbanization has significantly altered stream habitat in this region and may enhance invasion by exotic species and negatively affect diversity and abundance of native amphibians.  相似文献   

15.
Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape-scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner-city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity-nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine-fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.  相似文献   

16.
Managing Boreal Forest Landscapes for Flying Squirrels   总被引:5,自引:0,他引:5  
Abstract: Flying squirrel (Pteromys volans) populations have declined severely during the past few decades, and the species has become a focal species in forest management and the conservation debate in Finland. We compared landscape structure around known flying squirrel home ranges with randomly chosen forest sites to determine which landscape patterns characterize the areas occupied by the species in northern Finland. We sought to identify the key characteristics of the landscape that support the remaining flying squirrel populations. We analyzed landscape structure within circular areas with 1- and 3-km radii around 63 forest sites occupied by flying squirrels, and around 96 random sites. We applied stepwise analysis of the landscape structure where landscapes were built up step-by-step by adding patch types in order of their suitability for the flying squirrel. The land-use and forest-resource data for the analysis were derived from multisource national forest inventory and imported to a geographical information system. Landscape patch types were divided into three suitability categories: breeding habitat (mixed spruce-deciduous forests); dispersal habitat ( pine and young forests); and unsuitable habitat ( young sapling stands, open habitats, water). Flying squirrel landscapes contained more suitable breeding habitat patches and were better connected by dispersal habitats than random landscapes. Our results suggest that for the persistence of the flying squirrel, forest managers should 1) maintain a deciduous mixture, particularly in spruce-dominated forests; 2) maintain physical connectivity between optimal breeding habitats; and 3) impose coarse-grained structures on northeastern Finnish landscapes at current levels of habitat availability.  相似文献   

17.
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.  相似文献   

18.
Abstract: Various factors influence animal movements in fragmented landscapes, and determining these factors is key to understanding ecological processes at a landscape scale. My goals were (1) to determine what factors influence movements of Keel-billed Toucans (    Ramphastos sulfuratus ) in a fragmented landscape in southern Mexico and (2) to use this information to predict how movement patterns might change if the landscape was altered. I developed a cost-distance geographic information system model that adjusts Euclidean distances by a cost of moving through a certain habitat type. Cost was based on habitat preferences exhibited by toucans. I then used this model to predict how movements might be affected by removal of isolated trees and living fences from the pasture matrix and by removal of forest remnants. Toucans moved more frequently between remnants separated by a low cost-distance value. There was a cost-distance threshold beyond which movements between remnants were rare. Below this threshold, fruit abundance influenced toucan movements but remnant area was not influential in that toucans did not preferentially move to large patches. Remnants close to various other remnants were more frequently visited by toucans, indicating that landscape connectivity influences toucan movements. Toucans incurred a 10–30% cost increase when moving in computer-simulated landscapes, indicating that changes in forest cover or configuration of habitats may negatively affect toucan populations, assuming that increased cost has a fitness consequence. Cost-distance modeling has been relatively unexplored and may be a valuable tool for determining how the configuration of a landscape impedes or facilitates animal movements.  相似文献   

19.
Knowledge of the relationship between species traits and species distribution in fragmented landscapes is important for understanding current distribution patterns and as background information for predictive models of the effect of future landscape changes. The existing studies on the topic suffer from several drawbacks. First, they usually consider only traits related to dispersal ability and not growth. Furthermore, they do not apply phylogenetic corrections, and we thus do not know how considerations of phylogenetic relationships can alter the conclusions. Finally, they usually apply only one technique to calculate habitat isolation, and we do not know how other isolation measures would change the results. We studied the issues using 30 species forming congeneric pairs occurring in fragmented dry grasslands. We measured traits related to dispersal, survival, and growth in the species and recorded distribution of the species in 215 grassland fragments. We show many strong relationships between species traits related to both dispersal and growth and species distribution in the landscape, such as the positive relationship between habitat occupancy and anemochory and negative relationships between habitat occupancy and seed dormancy. The directions of these relationships, however, often change after application of phylogenetic correction. For example, more isolated habitats host species with smaller seeds. After phylogenetic correction, however, they turn out to host species with larger seeds. The conclusions also partly change depending on how we calculate habitat isolation. Specifically, habitat isolation calculated from occupied habitats only has the highest predictive power. This indicates slow dynamics of the species. All the results support the expectation that species traits have a high potential to explain patterns of species distribution in the landscape and that they can be used to build predictive models of species distribution. The specific conclusions are, however, dependent on the technique used, and we should carefully consider this when comparing among different studies. Since different techniques answer slightly different questions, we should attempt to use analyses both with and without phylogenetic correction and explore different isolation measures whenever possible and compare the results.  相似文献   

20.
Response of Red-Backed Voles to Recent Patch Cutting in Subalpine Forest   总被引:6,自引:0,他引:6  
We examined the response of southern red-backed voles ( Clethrionomys gapperi ) to patch cutting in a forested landscape in which 23% of the forest cover had been removed by timber harvest. We live trapped voles in and around 18 patchcuts in one watershed of southern Wyoming. Although we found a significant difference in capture rates between patchcut interior and forest habitats in 1 of 2 years, voles did not strongly avoid the interior of patchcuts. This result contrasts with results from most studies of voles in clearcut ecosystems, which report that red-backed voles are generally rare or absent from clearcuts. Capture rates were highest on both sides of the patchcut edge, which also contrasts with studies of voles at the edges of forest remnants. The use of patchcut interior and edge habitats could not be explained as a consequence of juvenile voles dispersing to those habitats or males moving through the habitat in search of mates. We suggest that, despite similar physiognomy in patchcut and clearcut sites, the differences in landscape structure in perforated versus fragmented landscapes lead to very different patterns of vole movement. Understanding the scales at which voles perceive landscapes as coarse- or fine-grained will be key to developing predictive models to aid managers in designing timber sales that maintain high vole populations. Our results emphasize the importance of the spatial pattern and scale of disturbance in determining the response of vertebrates to landscape change and the need for more refined investigations of the consequences of deforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号