首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

2.
The relationship between dense non-aqueous phase liquid (DNAPL) mass reduction and contaminant mass flux was investigated experimentally in four model source zones. The flow cell design for the experiments featured a segmented extraction well that allowed for analysis of spatially resolved flux information. This flux information was coupled with image analysis of the NAPL spatial distribution to investigate the relationship between flux and the up-gradient NAPL architecture. Results indicate that in the systems studied, the relationship between DNAPL mass reduction and contaminant mass flux was primarily controlled by the NAPL architecture. A specific definition of NAPL architecture was employed where the source zone is resolved into a collection of streamtubes with spatial variability in NAPL saturation along each streamtube integrated and transformed into an effective NAPL content for each streamtube. The distribution of NAPL contents among the streamtubes (NAPL architecture) controlled dissolution dynamics. Two simplified models, a streamtube model and an effective Damkohler number model, were investigated for their ability to simulate dissolution dynamics.  相似文献   

3.
4.
This paper presents a model for the geometry of nonaqueous phase liquid (NAPL) pools and mounds in homogeneous soils and soils with discrete textural interfaces. It is shown that the concepts of capillary pressure-saturation curve hysteresis and entry pressures are integral to the complete conceptualization of pool and mound geometry. Unless hysteresis is included in the analysis, light NAPL (LNAPL) in homogeneous soils cannot exist in pools at all, and dense NAPL (DNAPL) will not mound on horizontal textural interfaces unless lateral confining boundaries are present. The proposed model also implies that remobilization of DNAPL pools will occur at lower hydraulic gradients than those predicted with previous models. Comparing predicted and experimental DNAPL and LNAPL pool thicknesses and the location of an LNAPL lens with respect to the top of the capillary fringe validate the model.  相似文献   

5.
A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hydraulic "structure" and non-aqueous phase liquid (NAPL) "architecture" have been described in a companion paper (Enfield, C.G., Wood, A.L., Espinoza, F.P., Brooks, M.C., Annable, M., Rao, P.S.C., this issue. Design of aquifer remediation systems: (1) describing hydraulic structure and NAPL architecture using tracers. J. Contam. Hydrol.). The previously defined functions were used along with the properties of the remedial fluids to describe remedial performance. There are two objectives for this paper. First, is to show that a simple analytic element model can be used to give a reasonable estimate of system performance. This is accomplished by comparing forecast performance to observed performance. The second objective is to display the model output in terms of change in mass flux and mass removal as a function of pore volumes of remedial fluid injected. The modelling results suggest that short term benefits are obtained and related to mass reduction at the sites where the model was tested.  相似文献   

6.
Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution.  相似文献   

7.
A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.  相似文献   

8.
The partitioning tracer technique for dense nonaqueous phase liquid (DNAPL) characterization was evaluated in an isolated test cell, in which controlled releases of perchloroethylene (PCE) had occurred. Four partitioning tracer tests were conducted, two using an inverted, double five-spot pumping pattern, and two using vertical circulation wells. Two of the four tests were conducted prior to remedial activities, and two were conducted after. Each test was conducted as a "blind test" where researchers conducting the partitioning tracer tests had no knowledge of the volume, method of release, nor resulting spatial distribution of DNAPL. Multiple partitioning tracers were used in each test, and the DNAPL volume estimates varied significantly within each test based on the different partitioning tracers. The tracers with large partitioning coefficients generally predicted a smaller volume of PCE than that expected based on the actual release volume. However, these predictions were made for low DNAPL saturations (average saturation was approximately 0.003), under conditions near the limits of the method's application. Furthermore, there were several factors that may have hindered prediction accuracy, including tracer degradation and remedial fluid interference.  相似文献   

9.
Presented here is a reanalysis of results previously presented by [Davis, B.M., Istok, J.D., Semprini, L., 2002. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. J. Contam. Hydrol. 58, 129-146] of push-pull tests using radon as a naturally occurring partitioning tracer for evaluating NAPL contamination. In a push-pull test where radon-free water and bromide are injected, the presence of NAPL is manifested in greater dispersion of the radon breakthrough curve (BTC) relative to the bromide BTC during the extraction phase as a result of radon partitioning into the NAPL. Laboratory push-pull tests in a dense or DNAPL-contaminated physical aquifer model (PAM) indicated that the previously used modeling approach resulted in an overestimation of the DNAPL (trichloroethene) saturation (S(n)). The numerical simulations presented here investigated the influence of (1) initial radon concentrations, which vary as a function of S(n), and (2) heterogeneity in S(n) distribution within the radius of influence of the push-pull test. The simulations showed that these factors influence radon BTCs and resulting estimates of S(n). A revised method of interpreting radon BTCs is presented here, which takes into account initial radon concentrations and uses non-normalized radon BTCs. This revised method produces greater radon BTC sensitivity at small values of S(n) and was used to re-analyze the results from the PAM push-pull tests reported by Davis et al. The re-analysis resulted in a more accurate estimate of S(n) (1.8%) compared with the previously estimated value (7.4%). The revised method was then applied to results from a push-pull test conducted in a light or LNAPL-contaminated aquifer at a field site, resulting in a more accurate estimate of S(n) (4.1%) compared with a previously estimated value (13.6%). The revised method improves upon the efficacy of the radon push-pull test to estimate NAPL saturations. A limitation of the revised method is that 'background' radon concentrations from a non-contaminated well in the NAPL-contaminated aquifer are needed to accurately estimate NAPL saturation. The method has potential as a means of monitoring the progress of NAPL remediation.  相似文献   

10.
11.
In preparation for a field experiment where a NAPL will be injected into a fractured sandstone aquifer, a 2D invasion percolation model of DNAPL migration in a single horizontal fracture with varying aperture has been developed. This simulation investigated the effect of spatially correlated fracture aperture fields on pressure-saturation relationships as a function of variable aperture mean, standard deviation, and spatial correlation statistics under hydrostatic conditions. Results from spatially correlated variable aperture fields can be significantly different from random fields. Longer ranges decreased entry pressures and higher standard deviations decreased nonwetting phase saturations. Mean aperture is the major control on displacement pressure, entry pressure and the form of the pressure-saturation curve. Simulation results using statistical parameters for a variable aperture natural sandstone fracture as described by Yeo et al. [International Journal of Rock Mechanics and Mining Sciences 35 (1998) 1051] closely resemble a Brooks-Corey pressure-saturation function, and exhibit a distinct entry pressure followed by a rapid increase in nonwetting phase saturation. Graphical estimates of entry pressure provide a good approximation of the critical aperture controlling the formation of a continuous nonwetting phase pathway in a variable aperture fracture. Consequently, we show that multiphase flow concepts developed for porous media can successfully be applied to variable aperture fractures. Entry pressure correlates well to the mean aperture in these simulations when using a Gaussian distribution of fracture aperture. Interpreted aperture distributions from NAPL injection experiments do not fit the true distribution well at low nonwetting phase saturations, but do at higher saturations above the entry pressure. Consequently, true, mechanical aperture variation within a fracture plane cannot be determined from NAPL injection experiments either in the field or laboratory.  相似文献   

12.
Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.  相似文献   

13.
A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30 degrees dip angle, which was similar to PCE recovery for injection in the downward flow direction. Lower areal PCE recovery at greater dip angles in either direction of flow was attributed to DNAPL swelling and migration, flood front instabilities and bypassing of the displaced fluid past the extraction wells during the alcohol pre-flood. Additional results demonstrate that the use of an alcohol pre-flood can be beneficial in improving DNAPL recovery in the horizontal orientation, but pre-flooding may reduce areal recovery efficiency in dip-angle orientations. This study also demonstrates the use of theoretical perturbation (fingering) analysis in predicting NAPL recovery efficiency for flooding processes in remediating aquifers with dip angles.  相似文献   

14.
Numerical simulation is used to examine the relative velocities of DNAPL and aqueous phase plumes in sandy aquifers where lateral spreading of DNAPL has occurred at the base of the aquifer. The scenario being modeled is one where a permeable aquifer is underlain by a sloping aquitard, which results in lateral migration of the DNAPL down the slope, in addition to lateral migration of an aqueous phase plume subject to a specified hydraulic gradient. A sensitivity analysis is presented to the impacts of both DNAPL properties and geologic properties. The most important chemical properties governing the relative velocities of the DNAPL and the shallow aqueous phase plume are the DNAPL viscosity and the aqueous component soil-water partition coefficient (Kd). The dip of the underlying aquitard was found to be relatively unimportant, at least for the range of values studied. The scenario under consideration can be important in conceptual model development and remedial design, as in certain cases DNAPL could be migrating in areas without the evidence of a well-developed aqueous phase plume. The implication of this work is that the absence of a shallow aqueous phase plume directly downgradient of a DNAPL source zone does not rule out the possibility of deep occurrences of DNAPL beyond the shallow monitoring well network. A further finding of this study is that the occurrence of a highly sorbing compound in groundwater at virtually any concentration may indicate the immediate upgradient presence of residual or pooled DNAPL.  相似文献   

15.
In situ chemical oxidation (ISCO) employing permanganate is an emerging technology that has been successful at enhancing mass removal from DNAPL source zones in unconsolidated media at the pilot-scale. The focus of this study was to evaluate the applicability of flushing a permanganate solution across two single vertical fractures in a laboratory environment to remove free phase DNAPL. The fracture experiments were designed to represent a portion of a larger fractured aquifer system impacted by a near-surface DNAPL spill over a shallow fractured rock aquifer. Each fracture was characterized by hydraulic and tracer tests, and the aperture field for one of the fractures was mapped using a co-ordinate measurement machine. Following DNAPL emplacement, a series of water and permanganate flushes were performed. To support observations from the fracture experiments, a set of batch experiments was conducted. The data from both fracture experiments showed that the post-oxidation effluent concentration was not impacted by the oxidant flush; however, changes in the aperture distribution, flow field, and flow rate were observed. These changes resulted in a significant decrease to the mass loading from the fractures, and were attributed to the build-up of oxidation by-products (manganese oxides and carbon dioxide) within the fracture which was corroborated by the batch experiment data and visual examination of the walls of one fracture. These results provide insight into the potential impact that a permanganate solution and oxidation by-products can have on the aperture distribution within a fracture and on DNAPL mass transfer rates. A permanganate flush or injection completed within a fractured rock aquifer may lead to the development of an insoluble product adjacent to the DNAPL which results in the reduction or complete elimination of advective regions near the DNAPL and reduces mass transfer rates. This outcome would have significant implications on the plume generating potential of the remaining DNAPL.  相似文献   

16.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

17.
This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.  相似文献   

18.
The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL spill event decreased CT mass that reached the water table by 98% and had a significant impact on the formation of trapped NAPL. For all cases simulated, use of the new constitutive model that allows the formation of residual NAPL increased the amount of NAPL retained in the vadose zone. Density-driven advective gas flow from the ground surface controlled vapor migration in strongly anisotropic layers, causing NAPL mass flux to the lower layer to be reduced. These simulations indicate that consideration of the formation of residual and trapped NAPLs and dynamic boundary conditions (e.g., areas, rates, and periods of different NAPL and water discharge and fluctuations of atmospheric pressure) in the context of full three-phase flow are needed, especially for NAPL spill events at the ground surface. In addition, NAPL evaporation, density-driven gas advection, and NAPL vertical movement enhanced by water flow must be considered in order to predict NAPL distribution and migration in the vadose zone.  相似文献   

19.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confining layer for the underlying regional aquifer. Three suites of three tracers were injected into wells located 14, 24, and 24 m from a single, central extraction well. The tracers comprised noble gases (traditionally thought to be nonsorbing), alkanes (primarily water partitioning), perfluorides (primarily NAPL partitioning), and halons (both NAPL and water partitioning). Observations of vacuum response were consistent with flow in a fractured system. The halon tracers exhibited the greatest amount of retardation, and helium and the perfluoride tracers the least. The alkane tracers were unexpectedly more retarded than the perfluoride tracers, indicating low NAPL saturations and high water saturations. An NAPL saturation of 0.01, water saturation of 0.215, and gas saturation of 0.775 was estimated based on analysis of the suite of tracers comprising helium, perfluoromethylcyclohexane and dibromodifluoromethane, which was considered to be the most robust set. The estimated saturations compare reasonably well to independently determined values.  相似文献   

20.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号