首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In the United States, many state and federally funded conservation programs are required to quantify the water quality benefits resulting from their efforts. The objective of this research was to evaluate the impact of conservation practices subsidized by the Oklahoma Conservation Commission on phosphorus and sediment loads to Lake Wister. Conservation practices designed to increase vegetative cover in grazed pastures were evaluated using Landsat imagery and the Soil and Water Assessment Tool (SWAT). Several vegetative indices were derived from Landsat imagery captured before and after the implementation of conservation practices. Collectively, these indicators provided an estimate of the change in vegetative soil cover attributable to conservation practices in treated fields. Field characteristics, management, and changes in vegetative cover were used in the SWAT model to simulate sediment and phosphorus losses before and after practice implementation. Overall, these conservation practices yielded a 1.9% improvement in vegetative cover and a predicted sediment load reduction of 3.5%. Changes in phosphorus load ranged from a 1.0% improvement to a 3.5% increase, depending upon initial vegetative conditions. The use of fertilizers containing phosphorus as a conservation practice in low-productivity pastures was predicted by SWAT to increase net phosphorus losses despite any improvement in vegetative cover. This combination of vegetative cover analysis and hydrologic simulation was a useful tool for evaluating the effects of conservation practices at the basin scale and may provide guidance for the selection of conservation measures subsidized in future conservation programs.  相似文献   

2.
Targeting of agricultural conservation practices to cost‐effective locations has long been of interest to watershed managers, yet its implementation cannot succeed without meaningful engagement of agricultural producers who are decision makers on the lands they farm. In this study, we engaged 14 west‐central Indiana producers and landowners in an adaptive targeting experiment. Interviews carried out prior to targeting provided rich spatial information on existing conservation practices as well as producers' preferences for future conservation projects. We targeted six of the most accepted conservation practices using the Soil and Water Assessment Tool and spatial optimization using a genetic algorithm approach. Fairly optimal conservation scenarios were possible with even the most limiting constraints of farmer‐accepted practices. We presented in follow‐up interviews a total of 176 conservation practice recommendations on 103 farm fields to 10 farmers whose lands were targeted for conservation. Primary findings indicated producers were interested in the project, were open to hearing recommendations about their lands, and expressed a high likelihood of adopting 35% of targeted recommendations. Farmers generally viewed the interview process and presentation of results quite favorably, and the interviews were found to build trust and make the targeting process more acceptable to them.  相似文献   

3.
Estimating the effect of agricultural conservation practices on reducing nutrient loss using observational data can be confounded by factors such as differing crop types and management practices. As we may not have the full knowledge of these confounding factors, conventional statistical meta‐analysis methods can be misleading. We discuss the use of two statistical causal analysis methods for quantifying the effects of water and soil conservation practices in reducing P loss from agricultural fields. With the propensity score method, a subset of data was used to form a treatment group and a control group with similar distributions of confounding factors. With the multilevel modeling method, data were stratified based on important confounding factors, and the conservation practice effect was evaluated for each stratum. Both methods resulted in similar estimates of the conservation practice effect (total P load reduction avg. ~70%). In addition, both methods show evidence of conservation practices reducing the incremental increase in total P export per unit increase in fertilizer application. These results are presented as examples of the types of outcomes provided by statistical causal analyses, not to provide definitive estimates of P loss reduction. The enhanced meta‐analysis methods presented within are applicable for improved assessment of agricultural practices and their effects and can be used for providing realistic parameter values for watershed‐scale modeling.  相似文献   

4.
Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the variable source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffers capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.  相似文献   

5.
Conservation policy in agricultural systems in the United States relies primarily on voluntary action by farmers. Federal conservation programs, including the Environmental Quality Incentives Program, offer incentives, both financial and technical, to farmers in exchange for adoption of conservation practices. Understanding motivations for (as well as barriers to) participation in voluntary programs is important for the design of future policy and effective outreach. While a significant literature has explored motivations and barriers to conservation practice adoption and participation in single programs, few studies in the U.S. context have explored general participation by farmers in one place and time. A mixed-methods research approach was utilized to explore farmer participation in all U.S. Farm Bill programs in Indiana. Current and past program engagement was high, with nearly half of survey respondents reporting participation in at least one program. Most participants had experience with the Conservation Reserve Program, with much lower participation rates in other programs. Most interview participants who had experience in programs were motivated by the environmental benefits of practices, with incentives primarily serving to reduce the financial and technical barriers to practice adoption. The current policy arrangement, which offers multiple policy approaches to conservation, offers farmers with different needs and motivations a menu of options. However, evidence suggests that the complexity of the system may be a barrier that prevents participation by farmers with scarce time or resources. Outreach efforts should focus on increasing awareness of program options, while future policy must balance flexibility of programs with complexity.  相似文献   

6.
Qiu, Zeyuan, 2010. Prioritizing Agricultural Lands for Conservation Buffer Placement Using Multiple Criteria. Journal of the American Water Resources Association (JAWRA) 1-13. DOI: 10.1111/j.1752-1688.2010.00466.x Abstract: Although conservation buffers are multifunctional, the current conservation buffer planning strategies tend to use a single criterion, most frequently a hydrological or soil condition indicator, to guide conservation buffer placement. This study presents a watershed planning approach that prioritizes agricultural lands for conservation buffers based on multiple selection criteria and applies the approach to Raritan Basin in central New Jersey. The multiple selection criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate. These criteria capture the conservation buffers’ benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. An expert panel was used to identify and define the section criteria, review the measured values of those criteria, and develop the classification scales that assign the class score to each criterion. The prioritization is based on the summation of the criteria class scores. About one-third of agricultural lands are prioritized for conservation buffers in Raritan Basin. The total program cost of converting those prioritized agricultural lands to conservation buffers in Raritan Basin is estimated to be between $54.8 and 102.9 million depending on the composition of installed conservation buffer practices.  相似文献   

7.
Targeting of agricultural conservation practices to the most effective locations in a watershed can promote wise use of conservation funds to protect surface waters from agricultural nonpoint source pollution. A spatial optimization procedure using the Soil and Water Assessment Tool was used to target six widely used conservation practices, namely no‐tillage, cereal rye cover crops (CC), filter strips (FS), grassed waterways (GW), created wetlands, and restored prairie habitats, in two west‐central Indiana watersheds. These watersheds were small, fairly flat, extensively agricultural, and heavily subsurface tile‐drained. The targeting approach was also used to evaluate the model's representation of conservation practices in cost and water quality improvement, defined as export of total nitrogen, total phosphorus, and sediment from cropped fields. FS, GW, and habitats were the most effective at improving water quality, while CC and wetlands made the greatest water quality improvement in lands with multiple existing conservation practices. Spatial optimization resulted in similar cost‐environmental benefit tradeoff curves for each watershed, with the greatest possible water quality improvement being a reduction in total pollutant loads by approximately 60%, with nitrogen reduced by 20‐30%, phosphorus by 70%, and sediment by 80‐90%.  相似文献   

8.
Well-established perennial vegetation in riparian areas of agricultural lands can stabilize the end points of gullies and reduce their overall erosion. The objective of this study was to investigate the impacts of riparian land management on gully erosion. A field survey documented the number of gullies and cattle access points in riparian forest buffers, grass filters, annual row-cropped fields, pastures in which the cattle were fenced out of the stream, and continuously, rotationally and intensive rotationally grazed pastures in three regions of Iowa. Gully lengths, depths and severely eroding bank areas were measured. Gullies exhibited few significant differences among riparian management practices. The most significant differences were exhibited between conservation and agricultural management practices, an indication that conservation practices could reduce gully erosion. Changes in pasture management from continuous to rotational or intensive rotational grazing showed no reductions in gully erosion. It is important to recognize that more significant differences among riparian management practices were not exhibited because the conservation and alternative grazing practices had recently been established. As gully formation is more impacted by upland than riparian management, gully stabilization might require additional upland conservation practices. The existence of numerous cattle access points in pastures where cattle have full access to the stream also indicates that these could be substantial sources of sediment for streams. Finally, the gully banks were less important sediment contributors to streams than the streambanks. The severely eroding bank areas in streams were six times greater than those in the gullies in the monitored reaches.  相似文献   

9.
SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen‐load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi‐Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen‐load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen‐management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen‐management practices with innovative nitrogen‐removal practices such as tile‐drainage treatment wetlands, drainage–ditch enhancements, stream‐channel restoration, and floodplain reconnection. Combining nitrogen‐management practices with nitrogen‐removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen‐removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen‐management practices at the field scale and diverse nitrogen‐removal practices at the landscape scale.  相似文献   

10.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

11.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

12.
Industrialized agriculture currently substitutes many of the ecological functions of soil micro-organisms, macroinvertebrates, wild plants, and vertebrate animals with high cost inputs of pesticides and fertilizers. Enhanced biological diversity potentially offers agricultural producers a means of reducing the cost of their production. Conservation of biodiversity in agricultural landscapes may be greatly enhanced by the adoption of certain crop management practices, such as reduced pesticide usage or measures to prevent soil erosion. Still, the vast monocultures comprising the crop area in many Canadian agricultural landscapes are often of limited conservation value, thus the inclusion of appropriate wildlife habitat in and around arable lands is a fundamental prerequisite for the integration of wild species within agricultural landscapes. This review of current literature considers the potential for non-crop areas within agricultural landscapes to be reservoirs of agronomically beneficial organisms including plants, invertebrates, and vertebrate species. Non-crop habitats adjacent to crop land have been identified as significant for the maintenance of plant species diversity, for the conservation of beneficial pollinating and predatory insects, and as essential habitat for birds. A key component for enhancement of biodiversity is the reintroduction of landscape heterogeneity by (1) protection and enhancement of key non-crop areas, (2) smaller fields and farms, and (3) a greater mixture of crops, through rotation, intercropping and regional diversification. The benefits of increased biodiversity within arable lands are reviewed for various species groups. In the Canadian context, any serious attempt to derive significant agronomic benefit from increased biodiversity will require considerable changes in the agricultural programs and policies which shape mainstream industrialized agriculture. The problems of crop depredation by vertebrate species, weed and insect competition, which still represent significant impediments to the creation and proper management of wildlife habitat, are also discussed.  相似文献   

13.
Governmental agencies, nongovernmental organizations, and agricultural organizations promote water quality trading programs as an innovative policy to engage agricultural producers in conservation activities. Cost analyses suggest regulated sources can reduce compliance costs by purchasing agricultural nonpoint source credits. Yet, such “point‐nonpoint” trades are rare. This article assesses the demand for agricultural nonpoint sources in well‐developed nutrient trading programs in Virginia for industrial and municipal wastewater treatment plants, municipal stormwater programs, and land developers. Evidence suggests nutrient trading programs in Virginia will not stimulate investments in pollutant reduction practices on working agricultural lands. The lack of demand for agricultural nonpoint source credits can be attributed to a substantial degree to the design features and incentives present in multiple overlapping regulatory programs. The legal setting that dampens regulated source demand for nonpoint source credits in Virginia is broadly representative of conditions found elsewhere in the United States.  相似文献   

14.
Arbuckle, Jr., J. Gordon, 2012. Clean Water State Revolving Fund Loans and Landowner Investments in Agricultural Best Management Practices in Iowa. Journal of the American Water Resources Association (JAWRA) 1‐9. DOI: 10.1111/j.1752‐1688.2012.00688.x Abstract: Clean Water State Revolving Fund (CWSRF) loan programs for water quality have traditionally funded infrastructure projects at the community, municipality, or state level. They are increasingly being used to support individual landowner adoption of agricultural best management practices (BMPs) for nonpoint source pollution abatement. In 2005, the Iowa CWSRF initiated the Local Water Protection Program (LWPP) to increase the scope, scale, and rate of agricultural BMP establishment. This research examines the effectiveness of that program through a comparison of survey data from LWPP participants and state cost‐share recipients who were eligible for loans, but did not take them. Loan recipients’ assessments of the program were overwhelmingly positive, with near‐universal satisfaction with both the loan product and process. Results of statistical analyses indicate that loan recipients invested substantially more in conservation than nonrecipients. Evidence suggests that by helping program participants to overcome financial constraints, loans are facilitating larger and accelerated investments in conservation. Although findings indicate that conservation loans can play an important role in funding conservation, loan recipients also still depend on cost‐share. Loans are not necessarily a substitute for traditional forms of conservation funding, but rather another tool that landowners and conservation professionals can employ to facilitate investments in BMPs.  相似文献   

15.
ABSTRACT: Federal parks and other public lands have unique mandates and rules regulating their use and conservation. Because of variation in their response to local, regional, and global‐scale disturbance, development of mitigation strategies requires substantial research in the context of long‐term inventory and monitoring. In 1982, the National Park Service began long‐term, watershed‐level studies in a series of national parks. The objective was to provide a more comprehensive database against which the effects of global change and other issues could be quantified. A subset of five sites in North Carolina, Texas, Washington, Michigan, and Alaska, is examined here. During the last 50 years, temperatures have declined at the southern sites and increased at the northern sites with the greatest increase in Alaska. Only the most southern site has shown an increase in precipitation amount. The net effect of these trends, especially for the most northern and southern sites, would likely be an increase in the growing season and especially the time soil processes could continue without moisture or temperature limitations. During the last 18 years, there were few trends in atmospheric ion inputs. The most evident was the decline in SO42 deposition. There were no significant relationships between ion input and stream water output. This finding suggests other factors as modification of precipitation or canopy throughfall by soil processes, hydrologic flow path, and snowmelt rates are major processes regulating stream water chemical outputs.  相似文献   

16.
This article reviews the key, cross‐cutting findings concerning watershed‐scale cost‐effective placement of best management practices (BMPs) emerging from the National Institute of Food and Agriculture Conservation Effects Assessment Project (CEAP) competitive grants watershed studies. The synthesis focuses on two fundamental aspects of the cost‐effectiveness problem: (1) how to assess the location‐ and farmer‐specific costs of BMP implementation, and (2) how to decide on which BMPs need to be implemented and where within a given watershed. Major lessons learned are that (1) data availability remains a significant limiting factor in capturing within‐watershed BMP cost variability; (2) strong watershed community connections help overcome the cost estimation challenges; (3) detailing cost components facilitates the transferability of estimates to alternative locations and/or economic conditions; and (4) implicit costs vary significantly across space and farmers. Furthermore, CEAP studies showed that (5) evolutionary algorithms provide workable ways to identify cost‐effective BMP placements; (6) tradeoffs between total conservation costs and watershed‐scale cost‐effective water quality improvements are commonly large; (7) quality baseline information is essential to solving cost‐effectiveness problem; and (8) systemic and modeling uncertainties alter cost‐effective BMP placements considerably.  相似文献   

17.
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

18.
The Conservation Reserve Program (CRP), created in 1985, provides conservation benefits and agricultural supply control through voluntary, long-term retirement of crop land. While the effects of the CRP on the agricultural sector are well understood, the implications of its conservation benefits for rural economies remain largely undocumented. To quantify the effects on rural economies, this study addressed the net economic effects of decreased agricultural activity and increased recreational activity associated with the CRP in six rural areas of North Dakota from 1996 to 2000. Based on the level of economic activity that would have occurred in the absence of the program, net revenues from CRP land if returned to agricultural production in the six study areas were estimated at $50.2 million annually or $37 per acre of land currently enrolled in the CRP. Recreational (hunting) revenues as a result of the CRP in the study areas were estimated at $12.8 million annually or $9.45 per CRP-acre. The net economic effect of the CRP (lost agricultural revenues and gains in recreational expenditures) indicated that several areas of the state are not as economically burdened by the CRP as previous research has suggested. In addition, the net economic effects of the program would appear more favourable if revenues from all CRP-based recreation were included. The degree that recreational revenues offset agricultural losses might be further enhanced by enterprises that capitalize on the economic opportunities associated with expanded recreational activities on CRP lands.  相似文献   

19.
20.
Given the nature of modern conservation acquisitions, which often result from gifts and opportunistic purchases of full or partial property rights, there is a risk that the resulting mosaic of conserved resources may not represent a coherent set of public values and benefits. With different public and private entities engaged in land conservation, one would further expect that each organization would apply separate goals and criteria to the selection and acquisition of its conservation portfolio. This set of circumstances raises an important question: what is the aggregate outcome of this land conservation process? Retrospective assessments provide a means of reviewing cumulative historical decisions and elucidating lessons for improving future conservation strategies. This study used GIS-based spatial analysis to examine the relationships of private and public conservation lands in Maine to a variety of landscape metrics in order to determine the degree to which these lands represent core ecological and socioeconomic values that are meaningful to a wide cross-section of citizens. Results revealed that the gains of past conservation efforts in Maine are counter-balanced to some extent by apparent gaps in the existing fabric of conservation holdings. Conservation lands capture a representative sample of diverse habitat, provide a large measure of protection for multiple conservation values and indicators, and offer an unusual mix of outdoor recreational opportunities for residents and visitors alike. Yet, the majority of parcels are relatively small and isolated, and thus do not provide contiguous habitat blocks that offset ongoing processes of landscape fragmentation. Furthermore, the majority of area associated with many of the ecological metrics examined in this report is located outside the boundaries of current conservation holdings. The under-represented metrics identified in this investigation can be viewed as potential targets for new strategic conservation initiatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号