首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Tsai, Yushiou, Sara Cohen, and Richard M. Vogel, 2011. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies. Journal of the American Water Resources Association (JAWRA) 47(4):687‐701. DOI: 10.1111/j.1752‐1688.2011.00534.x Abstract: We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather‐sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low‐water‐demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields.  相似文献   

2.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   

3.
Water‐use efficiency in the United States (U.S.) has improved in recent years. Yet continued population growth coupled with increasingly conservation‐oriented regulatory frameworks suggest that residential water suppliers will have to realize additional efficiency gains in coming decades. Outdoor water‐use restrictions (OWRs) appear to be an increasingly prevalent demand‐side management policy tool. To date little research has investigated the policy mechanisms that govern OWR adoption and influence the prevalence of OWRs. This article fills this gap with an assessment of state‐level policies influencing local‐level restrictions on residential outdoor water use in each of the 48 contiguous U.S. states, and with a detailed illustration of the cross‐scalar dynamic of one state's policy framework in practice. An examination of the implementation of OWRs in 24 neighboring towns in Massachusetts across the 2003‐2012 period indicates the interplay between state‐level and local‐level policies leads to OWRs implementation over extended time‐periods, even when drought conditions are not present. This finding suggests OWRs are being used as a tool for general‐purpose water conservation rather than as a stopgap measure justified by temporary water shortage conditions. Future research should investigate how local‐level water savings vary with differing state‐level approaches.  相似文献   

4.
ABSTRACT: The water reductions resulting from Contra Costa Water District's 1989 residential audit program are measured using a multivariate regression model. The model explains metered residential water use as a function of both conservation and other household variables. The principle conclusions drawn are that (1) installation of low-flow showerheads reduced indoor water use by 9.7 percent or 7.8 gallons per capita day, (2) the outdoor segment of the audit reduced irrigation needs by 18.7 percent, and (3) irrigation timers are being used inefficiently.  相似文献   

5.
Within the research field of urban water demand management, understanding the link between environmental and water conservation attitudes and observed end use water consumption has been limited. Through a mixed method research design incorporating field-based smart metering technology and questionnaire surveys, this paper reveals the relationship between environmental and water conservation attitudes and a domestic water end use break down for 132 detached households located in Gold Coast city, Australia. Using confirmatory factor analysis, attitudinal factors were developed and refined; households were then categorised based on these factors through cluster analysis technique. Results indicated that residents with very positive environmental and water conservation attitudes consumed significantly less water in total and across the behaviourally influenced end uses of shower, clothes washer, irrigation and tap, than those with moderately positive attitudinal concern. The paper concluded with implications for urban water demand management planning, policy and practice.  相似文献   

6.
ABSTRACT: Casa del Agua (Casa) in suburban Tucson, Arizona, was designed as a residential water conservation facility for applied research, demonstration of operational results, and transfer of technology to the general public. Starting in 1983, an existing residence was located, modified and retrofitted to acquire operational data on residential water use. Modifications included retrofitting existing landscapes and enlarging the rooftop to collect and harvest rainwater; separating blackwater and graywater lines; installing meters, low‐water‐use appliances and fixtures, and underground storage tanks for rainwater and graywater; and creating a public information center. Over the 13‐plus years of actual operation, both the interior and exterior water use research results indicate large reductions in water use can be effected using water‐saving devices andlor harvesting and reusing rainwater and graywater. Casa achieved over a 24 percent reduction in total water use and a 47 percent reduction in municipal water used compared to the typical Tucson residence. Overall water used was comprised of harvested rainwater (10 percent), recycled graywater (20 percent), and municipal water (70 percent). Casa's Information Center was visited by approximately 13,000 people from September 1985 through April 1999 and the research has been featured in local, national, and international media.  相似文献   

7.
ABSTRACT: In early 1997, the Texas Edwards Aquifer Authority implemented a pilot Irrigation Suspension Program with the objectives of increasing springflow and providing relief to municipalities during drought. Irrigators were paid an average of $234 per acre to suspend water use, a price higher than regional land rental rates. Auction theory and program implementation details suggest that the program implementation partially caused inflated bids. The Irrigation Suspension Program is also compared to two alternative programs: (1) subsidizing more efficient irrigation technology and (2) buying land. The irrigation suspension is found to be more cost‐effective relative to subsidizing improved irrigation efficiency because it can be put in place only when aquifer levels are low. Land purchase is a cheaper alternative if the bid levels remain at the levels observed.  相似文献   

8.
Abstract: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest, while water use has increased. Climate has been proposed as the primary cause of base‐flow decline in the Scott River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative‐basin approach to estimating the relative contributions of climatic and non‐climatic factors to this decline. We used permutation tests to compare discharge in 5 streams and 16 snow courses between “historic” (1942‐1976) and “modern” (1977‐2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April 1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest latitude‐adjusted elevation and increased slightly in two higher‐elevation streams. Base‐flow decline in the Scott River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate that 39% of the observed 10 Mm3 decline in July 1‐October 22 discharge in the Scott River is explained by regional‐scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase in irrigation withdrawal from 48 to 103 Mm3/year since the 1950s.  相似文献   

9.
Los Angeles has a long history of importing water; however, drought, climate change, and environmental mitigation have forced the City to focus on developing more local water sources (target of 50% local supply by 2035). This study aims to improve understanding of water cycling in Los Angeles, including the impacts of imported water and water conservation policies. We evaluate the influence of local water restrictions on discharge records for 12 years in the Ballona Creek (urban) and Topanga Creek (natural) watersheds. Results show imported water has significantly altered the timing and volume of streamflow in the urban Ballona watershed, resulting in runoff ratios above one (more streamflow than precipitation). Further analysis comparing pre‐ vs. during‐mandatory water conservation periods shows there is a significant decrease in dry season streamflow during‐conservation in Ballona, indicating that prior to conservation efforts, heavy irrigation and other outdoor water use practices were contributing to streamflow. The difference between summer streamflow pre‐ vs. during‐conservation is enough to serve 160,000 customers in Los Angeles. If Los Angeles returns to more watering days, educating the public on proper irrigation rates is critical for ensuring efficient irrigation and conserving water; however, if water restrictions remain in place, the City must take the new flow volumes into account for complying with water quality standards in the region.  相似文献   

10.
This study investigates the variability of household water use in Melbourne with the aim of improving the current understanding of factors affecting residential water use. This understanding is critical to predicting household water demand, particularly at an appropriate spatial and temporal resolution to support Integrated Urban Water Management based planning and to improve the understanding on how different household water demands respond to demand management strategies. The study used two sets of data each collected from 837 households under significantly different water use conditions in the years 2003 and 2011. Data from each household consist of the household characteristics and quarterly metre readings. Ordinary Least Square regression analysis followed by detailed analysis of each factor was used to identify key factors affecting household water use. The variables studied are household size, typology of dwelling, appliance efficiency, presence of children under 12 years, presence of children aged between 12 and 18 years, tenancy, dwelling age, presence of swimming pool, evaporative cooler, and dishwasher. All of them except presence of children aged between 12 and 18 years, tenancy and dwelling age were identified as variables that contribute to the variability of household water use in Melbourne. The study also found that the explanatory capacity of these variables increases with decreasing water use. This paper also discusses the significance of the explanatory variables, their impact and how they vary over the seasons and years. The variables found in this study can be used to inform improved prediction and modelling of residential water demand. The paper also explores other possible drivers to explain residential water use in light of the moderate explanatory capacity of the variables selected for this study thus, provides useful insights into future research into water demand modelling.  相似文献   

11.
ABSTRACT: Granular matrix soil moisture sensors were used to control urban landscape irrigation in Boulder, Colorado, during 1997. The purpose of the study was to evaluate the effectiveness and reliability of the technology for water conservation. The 23 test sites included a traffic median, a small city park, and 21 residential sites. The results were very good. The system limited actual applications to an average of 73 percent of the theoretical requirement. This resulted in an average saving of $331 per installed sensor. The sensors were highly reliable. All 23 sensors were placed in service at least three years prior to the 1997 study during earlier studies. Of these, only two had failed by the beginning of the 1997 study, both due to external factors. Including replacement of these failed sensors, the total repair cost for the 1997 irrigation season was less than $270. The effort required to maintain each system was small, only about 6–7 minutes per visit. Each site was visited weekly for this study, but less frequent visits could be made in practice. The sensors observed in this study performed well, significantly reduced water consumption, and were easy to monitor and maintain. Soil moisture sensors appear to be a useful and economical tool for urban water conservation.  相似文献   

12.
ABSTRACT: Ground water irrigation pumpage of the High Plains Aquifer is controlled at the state level in Texas and Oklahoma but at the regional level in Kansas and Nebraska. Critical declines in the aquifer that threatened the reliability of local public water supply wells prompted Nebraska's Upper Republican Natural Resources District (URNRD) to mandate water restrictions in 1978. Under current regulations, irrigators may not extract more than 1,842 millimeters of water per certified hectare (ha) in any five‐year period. Meter monitoring ensures that irrigators comply with restrictions. Farmers now incorporate irrigation scheduling into their cropping practices in order to meet URNRD controls. This study examines whether irrigators are using ground water efficiently while complying with pumpage limits. Crop irrigation requirements (CIR) from 1986 to 1999 were derived from a water balance approach incorporating Penman‐Monteith evapotranspira‐tion (ET) calculations from weather data supplied by the High Plains Climate Center automated weather station network. A ratio of average water pumped per well to the CIR was developed to verify irrigation efficiency. Results indicate that irrigation applications were less than CIR during most irrigation seasons. Irrigation efficiency increases can be attributed to crop rotations, favorable growing season precipitation, use of ET estimates to schedule irrigation, and water allocations limited to less than all certified hectares.  相似文献   

13.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

14.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   

15.
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

16.
The exemption for groundwater wells for residential uses from the prior appropriations system, common in the western United States, has eroded in Washington State since about 2000 due to a series of legal cases. Water markets can allow the transfer of an existing water right, typically from an agricultural use, to compensate for the effect of a new residential well. But water must be legally and physically available in a way suitable to satisfy mitigation requirements. A recent court case in the Skagit basin in Northwestern Washington State has effectively halted residential development in rural areas of the basin because no suitable water rights are available to purchase for mitigation. This paper presents and examines the cost‐effectiveness of various water supply mitigation strategies. We find a small‐scale, distributed stream‐side storage system for augmenting instream flow purchased from downstream sources is relatively cost‐effective to mitigate against the effects of domestic groundwater use compared to more common alternatives. We consider transporting water to storage sites by both small‐gauge pipe and by truck. Overall, trucking water to stream‐side storage and release points tends to be more cost‐effective to mitigate against indoor‐use only given current subbasin housing densities, whereas piping for direct streamflow augmentation is more cost‐effective for higher mitigation needs associated with indoor and outdoor use and higher housing densities.  相似文献   

17.
Abstract: Thermoelectric power generation is responsible for the largest annual volume of water withdrawals in the United States although it is only a distant third after irrigation and industrial sectors in consumptive use. The substantial water withdrawals by thermoelectric power plants can have significant impacts on local surface and ground water sources, especially in arid regions. However, there are few studies of the determinants of water use in thermoelectric generation. Analysis of thermoelectric water use data in existing steam thermoelectric power plants shows that there is wide variability in unitary thermoelectric water use (in cubic decimeters per 1 kWh) within and among different types of cooling systems. Multiple‐regression models of unit thermoelectric water use were developed to identify significant determinants of unit thermoelectric water use. The high variability of unit usage rates indicates that there is a significant potential for water conservation in existing thermoelectric power plants.  相似文献   

18.
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments.  相似文献   

19.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

20.
Establishing baseline hydrologic characteristics for lakes in the United States (U.S.) is critical to evaluate changes to lake hydrology. We used the U.S. Environmental Protection Agency National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water‐level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope‐derived parameters: evaporation‐to‐inflow (E:I) and water residence time. We present (1) national and regional distributions of the study variables for both natural and man‐made lakes and (2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; whereas in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope‐derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow‐through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was less than one year and was longer in natural vs. man‐made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号